Solve for t
t = -\frac{7}{5} = -1\frac{2}{5} = -1.4
t = \frac{9}{4} = 2\frac{1}{4} = 2.25
Share
Copied to clipboard
20t^{2}-17t-63=0
Subtract 63 from both sides.
a+b=-17 ab=20\left(-63\right)=-1260
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 20t^{2}+at+bt-63. To find a and b, set up a system to be solved.
1,-1260 2,-630 3,-420 4,-315 5,-252 6,-210 7,-180 9,-140 10,-126 12,-105 14,-90 15,-84 18,-70 20,-63 21,-60 28,-45 30,-42 35,-36
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -1260.
1-1260=-1259 2-630=-628 3-420=-417 4-315=-311 5-252=-247 6-210=-204 7-180=-173 9-140=-131 10-126=-116 12-105=-93 14-90=-76 15-84=-69 18-70=-52 20-63=-43 21-60=-39 28-45=-17 30-42=-12 35-36=-1
Calculate the sum for each pair.
a=-45 b=28
The solution is the pair that gives sum -17.
\left(20t^{2}-45t\right)+\left(28t-63\right)
Rewrite 20t^{2}-17t-63 as \left(20t^{2}-45t\right)+\left(28t-63\right).
5t\left(4t-9\right)+7\left(4t-9\right)
Factor out 5t in the first and 7 in the second group.
\left(4t-9\right)\left(5t+7\right)
Factor out common term 4t-9 by using distributive property.
t=\frac{9}{4} t=-\frac{7}{5}
To find equation solutions, solve 4t-9=0 and 5t+7=0.
20t^{2}-17t=63
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
20t^{2}-17t-63=63-63
Subtract 63 from both sides of the equation.
20t^{2}-17t-63=0
Subtracting 63 from itself leaves 0.
t=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 20\left(-63\right)}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, -17 for b, and -63 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-17\right)±\sqrt{289-4\times 20\left(-63\right)}}{2\times 20}
Square -17.
t=\frac{-\left(-17\right)±\sqrt{289-80\left(-63\right)}}{2\times 20}
Multiply -4 times 20.
t=\frac{-\left(-17\right)±\sqrt{289+5040}}{2\times 20}
Multiply -80 times -63.
t=\frac{-\left(-17\right)±\sqrt{5329}}{2\times 20}
Add 289 to 5040.
t=\frac{-\left(-17\right)±73}{2\times 20}
Take the square root of 5329.
t=\frac{17±73}{2\times 20}
The opposite of -17 is 17.
t=\frac{17±73}{40}
Multiply 2 times 20.
t=\frac{90}{40}
Now solve the equation t=\frac{17±73}{40} when ± is plus. Add 17 to 73.
t=\frac{9}{4}
Reduce the fraction \frac{90}{40} to lowest terms by extracting and canceling out 10.
t=-\frac{56}{40}
Now solve the equation t=\frac{17±73}{40} when ± is minus. Subtract 73 from 17.
t=-\frac{7}{5}
Reduce the fraction \frac{-56}{40} to lowest terms by extracting and canceling out 8.
t=\frac{9}{4} t=-\frac{7}{5}
The equation is now solved.
20t^{2}-17t=63
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{20t^{2}-17t}{20}=\frac{63}{20}
Divide both sides by 20.
t^{2}-\frac{17}{20}t=\frac{63}{20}
Dividing by 20 undoes the multiplication by 20.
t^{2}-\frac{17}{20}t+\left(-\frac{17}{40}\right)^{2}=\frac{63}{20}+\left(-\frac{17}{40}\right)^{2}
Divide -\frac{17}{20}, the coefficient of the x term, by 2 to get -\frac{17}{40}. Then add the square of -\frac{17}{40} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{17}{20}t+\frac{289}{1600}=\frac{63}{20}+\frac{289}{1600}
Square -\frac{17}{40} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{17}{20}t+\frac{289}{1600}=\frac{5329}{1600}
Add \frac{63}{20} to \frac{289}{1600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{17}{40}\right)^{2}=\frac{5329}{1600}
Factor t^{2}-\frac{17}{20}t+\frac{289}{1600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{17}{40}\right)^{2}}=\sqrt{\frac{5329}{1600}}
Take the square root of both sides of the equation.
t-\frac{17}{40}=\frac{73}{40} t-\frac{17}{40}=-\frac{73}{40}
Simplify.
t=\frac{9}{4} t=-\frac{7}{5}
Add \frac{17}{40} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}