Factor
4r\left(5r-2\right)\left(r+5\right)
Evaluate
4r\left(5r-2\right)\left(r+5\right)
Share
Copied to clipboard
4\left(5r^{3}+23r^{2}-10r\right)
Factor out 4.
r\left(5r^{2}+23r-10\right)
Consider 5r^{3}+23r^{2}-10r. Factor out r.
a+b=23 ab=5\left(-10\right)=-50
Consider 5r^{2}+23r-10. Factor the expression by grouping. First, the expression needs to be rewritten as 5r^{2}+ar+br-10. To find a and b, set up a system to be solved.
-1,50 -2,25 -5,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -50.
-1+50=49 -2+25=23 -5+10=5
Calculate the sum for each pair.
a=-2 b=25
The solution is the pair that gives sum 23.
\left(5r^{2}-2r\right)+\left(25r-10\right)
Rewrite 5r^{2}+23r-10 as \left(5r^{2}-2r\right)+\left(25r-10\right).
r\left(5r-2\right)+5\left(5r-2\right)
Factor out r in the first and 5 in the second group.
\left(5r-2\right)\left(r+5\right)
Factor out common term 5r-2 by using distributive property.
4r\left(5r-2\right)\left(r+5\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}