Factor
\left(5a-8\right)\left(4a+5\right)
Evaluate
\left(5a-8\right)\left(4a+5\right)
Share
Copied to clipboard
p+q=-7 pq=20\left(-40\right)=-800
Factor the expression by grouping. First, the expression needs to be rewritten as 20a^{2}+pa+qa-40. To find p and q, set up a system to be solved.
1,-800 2,-400 4,-200 5,-160 8,-100 10,-80 16,-50 20,-40 25,-32
Since pq is negative, p and q have the opposite signs. Since p+q is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -800.
1-800=-799 2-400=-398 4-200=-196 5-160=-155 8-100=-92 10-80=-70 16-50=-34 20-40=-20 25-32=-7
Calculate the sum for each pair.
p=-32 q=25
The solution is the pair that gives sum -7.
\left(20a^{2}-32a\right)+\left(25a-40\right)
Rewrite 20a^{2}-7a-40 as \left(20a^{2}-32a\right)+\left(25a-40\right).
4a\left(5a-8\right)+5\left(5a-8\right)
Factor out 4a in the first and 5 in the second group.
\left(5a-8\right)\left(4a+5\right)
Factor out common term 5a-8 by using distributive property.
20a^{2}-7a-40=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 20\left(-40\right)}}{2\times 20}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-7\right)±\sqrt{49-4\times 20\left(-40\right)}}{2\times 20}
Square -7.
a=\frac{-\left(-7\right)±\sqrt{49-80\left(-40\right)}}{2\times 20}
Multiply -4 times 20.
a=\frac{-\left(-7\right)±\sqrt{49+3200}}{2\times 20}
Multiply -80 times -40.
a=\frac{-\left(-7\right)±\sqrt{3249}}{2\times 20}
Add 49 to 3200.
a=\frac{-\left(-7\right)±57}{2\times 20}
Take the square root of 3249.
a=\frac{7±57}{2\times 20}
The opposite of -7 is 7.
a=\frac{7±57}{40}
Multiply 2 times 20.
a=\frac{64}{40}
Now solve the equation a=\frac{7±57}{40} when ± is plus. Add 7 to 57.
a=\frac{8}{5}
Reduce the fraction \frac{64}{40} to lowest terms by extracting and canceling out 8.
a=-\frac{50}{40}
Now solve the equation a=\frac{7±57}{40} when ± is minus. Subtract 57 from 7.
a=-\frac{5}{4}
Reduce the fraction \frac{-50}{40} to lowest terms by extracting and canceling out 10.
20a^{2}-7a-40=20\left(a-\frac{8}{5}\right)\left(a-\left(-\frac{5}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{8}{5} for x_{1} and -\frac{5}{4} for x_{2}.
20a^{2}-7a-40=20\left(a-\frac{8}{5}\right)\left(a+\frac{5}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
20a^{2}-7a-40=20\times \frac{5a-8}{5}\left(a+\frac{5}{4}\right)
Subtract \frac{8}{5} from a by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
20a^{2}-7a-40=20\times \frac{5a-8}{5}\times \frac{4a+5}{4}
Add \frac{5}{4} to a by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
20a^{2}-7a-40=20\times \frac{\left(5a-8\right)\left(4a+5\right)}{5\times 4}
Multiply \frac{5a-8}{5} times \frac{4a+5}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
20a^{2}-7a-40=20\times \frac{\left(5a-8\right)\left(4a+5\right)}{20}
Multiply 5 times 4.
20a^{2}-7a-40=\left(5a-8\right)\left(4a+5\right)
Cancel out 20, the greatest common factor in 20 and 20.
x ^ 2 -\frac{7}{20}x -2 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 20
r + s = \frac{7}{20} rs = -2
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{7}{40} - u s = \frac{7}{40} + u
Two numbers r and s sum up to \frac{7}{20} exactly when the average of the two numbers is \frac{1}{2}*\frac{7}{20} = \frac{7}{40}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{7}{40} - u) (\frac{7}{40} + u) = -2
To solve for unknown quantity u, substitute these in the product equation rs = -2
\frac{49}{1600} - u^2 = -2
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -2-\frac{49}{1600} = -\frac{3249}{1600}
Simplify the expression by subtracting \frac{49}{1600} on both sides
u^2 = \frac{3249}{1600} u = \pm\sqrt{\frac{3249}{1600}} = \pm \frac{57}{40}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{7}{40} - \frac{57}{40} = -1.250 s = \frac{7}{40} + \frac{57}{40} = 1.600
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}