Factor
2\left(2a+9\right)\left(5a+2\right)
Evaluate
20a^{2}+98a+36
Share
Copied to clipboard
2\left(10a^{2}+49a+18\right)
Factor out 2.
p+q=49 pq=10\times 18=180
Consider 10a^{2}+49a+18. Factor the expression by grouping. First, the expression needs to be rewritten as 10a^{2}+pa+qa+18. To find p and q, set up a system to be solved.
1,180 2,90 3,60 4,45 5,36 6,30 9,20 10,18 12,15
Since pq is positive, p and q have the same sign. Since p+q is positive, p and q are both positive. List all such integer pairs that give product 180.
1+180=181 2+90=92 3+60=63 4+45=49 5+36=41 6+30=36 9+20=29 10+18=28 12+15=27
Calculate the sum for each pair.
p=4 q=45
The solution is the pair that gives sum 49.
\left(10a^{2}+4a\right)+\left(45a+18\right)
Rewrite 10a^{2}+49a+18 as \left(10a^{2}+4a\right)+\left(45a+18\right).
2a\left(5a+2\right)+9\left(5a+2\right)
Factor out 2a in the first and 9 in the second group.
\left(5a+2\right)\left(2a+9\right)
Factor out common term 5a+2 by using distributive property.
2\left(5a+2\right)\left(2a+9\right)
Rewrite the complete factored expression.
20a^{2}+98a+36=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-98±\sqrt{98^{2}-4\times 20\times 36}}{2\times 20}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-98±\sqrt{9604-4\times 20\times 36}}{2\times 20}
Square 98.
a=\frac{-98±\sqrt{9604-80\times 36}}{2\times 20}
Multiply -4 times 20.
a=\frac{-98±\sqrt{9604-2880}}{2\times 20}
Multiply -80 times 36.
a=\frac{-98±\sqrt{6724}}{2\times 20}
Add 9604 to -2880.
a=\frac{-98±82}{2\times 20}
Take the square root of 6724.
a=\frac{-98±82}{40}
Multiply 2 times 20.
a=-\frac{16}{40}
Now solve the equation a=\frac{-98±82}{40} when ± is plus. Add -98 to 82.
a=-\frac{2}{5}
Reduce the fraction \frac{-16}{40} to lowest terms by extracting and canceling out 8.
a=-\frac{180}{40}
Now solve the equation a=\frac{-98±82}{40} when ± is minus. Subtract 82 from -98.
a=-\frac{9}{2}
Reduce the fraction \frac{-180}{40} to lowest terms by extracting and canceling out 20.
20a^{2}+98a+36=20\left(a-\left(-\frac{2}{5}\right)\right)\left(a-\left(-\frac{9}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -\frac{2}{5} for x_{1} and -\frac{9}{2} for x_{2}.
20a^{2}+98a+36=20\left(a+\frac{2}{5}\right)\left(a+\frac{9}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
20a^{2}+98a+36=20\times \frac{5a+2}{5}\left(a+\frac{9}{2}\right)
Add \frac{2}{5} to a by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
20a^{2}+98a+36=20\times \frac{5a+2}{5}\times \frac{2a+9}{2}
Add \frac{9}{2} to a by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
20a^{2}+98a+36=20\times \frac{\left(5a+2\right)\left(2a+9\right)}{5\times 2}
Multiply \frac{5a+2}{5} times \frac{2a+9}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
20a^{2}+98a+36=20\times \frac{\left(5a+2\right)\left(2a+9\right)}{10}
Multiply 5 times 2.
20a^{2}+98a+36=2\left(5a+2\right)\left(2a+9\right)
Cancel out 10, the greatest common factor in 20 and 10.
x ^ 2 +\frac{49}{10}x +\frac{9}{5} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 20
r + s = -\frac{49}{10} rs = \frac{9}{5}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{49}{20} - u s = -\frac{49}{20} + u
Two numbers r and s sum up to -\frac{49}{10} exactly when the average of the two numbers is \frac{1}{2}*-\frac{49}{10} = -\frac{49}{20}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{49}{20} - u) (-\frac{49}{20} + u) = \frac{9}{5}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{9}{5}
\frac{2401}{400} - u^2 = \frac{9}{5}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{9}{5}-\frac{2401}{400} = -\frac{1681}{400}
Simplify the expression by subtracting \frac{2401}{400} on both sides
u^2 = \frac{1681}{400} u = \pm\sqrt{\frac{1681}{400}} = \pm \frac{41}{20}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{49}{20} - \frac{41}{20} = -4.500 s = -\frac{49}{20} + \frac{41}{20} = -0.400
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}