Solve for x
x=-\frac{\sqrt{1469}}{226}+\frac{5}{2}\approx 2.330409134
Graph
Share
Copied to clipboard
2260-904x=\sqrt{7^{2}+\left(-8\right)^{2}}\times 4\sqrt{13}
Multiply both sides of the equation by 113.
2260-904x=\sqrt{49+\left(-8\right)^{2}}\times 4\sqrt{13}
Calculate 7 to the power of 2 and get 49.
2260-904x=\sqrt{49+64}\times 4\sqrt{13}
Calculate -8 to the power of 2 and get 64.
2260-904x=\sqrt{113}\times 4\sqrt{13}
Add 49 and 64 to get 113.
2260-904x=\sqrt{1469}\times 4
To multiply \sqrt{113} and \sqrt{13}, multiply the numbers under the square root.
-904x=\sqrt{1469}\times 4-2260
Subtract 2260 from both sides.
-904x=4\sqrt{1469}-2260
The equation is in standard form.
\frac{-904x}{-904}=\frac{4\sqrt{1469}-2260}{-904}
Divide both sides by -904.
x=\frac{4\sqrt{1469}-2260}{-904}
Dividing by -904 undoes the multiplication by -904.
x=-\frac{\sqrt{1469}}{226}+\frac{5}{2}
Divide 4\sqrt{1469}-2260 by -904.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}