Evaluate
\frac{20a-10x-3ax}{2x+a}
Expand
\frac{20a-10x-3ax}{2x+a}
Graph
Share
Copied to clipboard
\frac{\left(20-3x\right)\left(a+2x\right)}{a+2x}-\frac{50x-6x^{2}}{a+2x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 20-3x times \frac{a+2x}{a+2x}.
\frac{\left(20-3x\right)\left(a+2x\right)-\left(50x-6x^{2}\right)}{a+2x}
Since \frac{\left(20-3x\right)\left(a+2x\right)}{a+2x} and \frac{50x-6x^{2}}{a+2x} have the same denominator, subtract them by subtracting their numerators.
\frac{20a+40x-3xa-6x^{2}-50x+6x^{2}}{a+2x}
Do the multiplications in \left(20-3x\right)\left(a+2x\right)-\left(50x-6x^{2}\right).
\frac{20a-10x-3xa}{a+2x}
Combine like terms in 20a+40x-3xa-6x^{2}-50x+6x^{2}.
\frac{\left(20-3x\right)\left(a+2x\right)}{a+2x}-\frac{50x-6x^{2}}{a+2x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 20-3x times \frac{a+2x}{a+2x}.
\frac{\left(20-3x\right)\left(a+2x\right)-\left(50x-6x^{2}\right)}{a+2x}
Since \frac{\left(20-3x\right)\left(a+2x\right)}{a+2x} and \frac{50x-6x^{2}}{a+2x} have the same denominator, subtract them by subtracting their numerators.
\frac{20a+40x-3xa-6x^{2}-50x+6x^{2}}{a+2x}
Do the multiplications in \left(20-3x\right)\left(a+2x\right)-\left(50x-6x^{2}\right).
\frac{20a-10x-3xa}{a+2x}
Combine like terms in 20a+40x-3xa-6x^{2}-50x+6x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}