Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(20-3x\right)\left(a+2x\right)}{a+2x}-\frac{50x-6x^{2}}{a+2x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 20-3x times \frac{a+2x}{a+2x}.
\frac{\left(20-3x\right)\left(a+2x\right)-\left(50x-6x^{2}\right)}{a+2x}
Since \frac{\left(20-3x\right)\left(a+2x\right)}{a+2x} and \frac{50x-6x^{2}}{a+2x} have the same denominator, subtract them by subtracting their numerators.
\frac{20a+40x-3xa-6x^{2}-50x+6x^{2}}{a+2x}
Do the multiplications in \left(20-3x\right)\left(a+2x\right)-\left(50x-6x^{2}\right).
\frac{20a-10x-3xa}{a+2x}
Combine like terms in 20a+40x-3xa-6x^{2}-50x+6x^{2}.
\frac{\left(20-3x\right)\left(a+2x\right)}{a+2x}-\frac{50x-6x^{2}}{a+2x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 20-3x times \frac{a+2x}{a+2x}.
\frac{\left(20-3x\right)\left(a+2x\right)-\left(50x-6x^{2}\right)}{a+2x}
Since \frac{\left(20-3x\right)\left(a+2x\right)}{a+2x} and \frac{50x-6x^{2}}{a+2x} have the same denominator, subtract them by subtracting their numerators.
\frac{20a+40x-3xa-6x^{2}-50x+6x^{2}}{a+2x}
Do the multiplications in \left(20-3x\right)\left(a+2x\right)-\left(50x-6x^{2}\right).
\frac{20a-10x-3xa}{a+2x}
Combine like terms in 20a+40x-3xa-6x^{2}-50x+6x^{2}.