Evaluate
144p^{2}-24p-91
Factor
144\left(p-\left(-\frac{\sqrt{23}}{6}+\frac{1}{12}\right)\right)\left(p-\left(\frac{\sqrt{23}}{6}+\frac{1}{12}\right)\right)
Share
Copied to clipboard
-100+9\times 16p^{2}-24p+9
Subtract 120 from 20 to get -100.
-100+144p^{2}-24p+9
Multiply 9 and 16 to get 144.
-91+144p^{2}-24p
Add -100 and 9 to get -91.
factor(-100+9\times 16p^{2}-24p+9)
Subtract 120 from 20 to get -100.
factor(-100+144p^{2}-24p+9)
Multiply 9 and 16 to get 144.
factor(-91+144p^{2}-24p)
Add -100 and 9 to get -91.
144p^{2}-24p-91=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 144\left(-91\right)}}{2\times 144}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-\left(-24\right)±\sqrt{576-4\times 144\left(-91\right)}}{2\times 144}
Square -24.
p=\frac{-\left(-24\right)±\sqrt{576-576\left(-91\right)}}{2\times 144}
Multiply -4 times 144.
p=\frac{-\left(-24\right)±\sqrt{576+52416}}{2\times 144}
Multiply -576 times -91.
p=\frac{-\left(-24\right)±\sqrt{52992}}{2\times 144}
Add 576 to 52416.
p=\frac{-\left(-24\right)±48\sqrt{23}}{2\times 144}
Take the square root of 52992.
p=\frac{24±48\sqrt{23}}{2\times 144}
The opposite of -24 is 24.
p=\frac{24±48\sqrt{23}}{288}
Multiply 2 times 144.
p=\frac{48\sqrt{23}+24}{288}
Now solve the equation p=\frac{24±48\sqrt{23}}{288} when ± is plus. Add 24 to 48\sqrt{23}.
p=\frac{\sqrt{23}}{6}+\frac{1}{12}
Divide 24+48\sqrt{23} by 288.
p=\frac{24-48\sqrt{23}}{288}
Now solve the equation p=\frac{24±48\sqrt{23}}{288} when ± is minus. Subtract 48\sqrt{23} from 24.
p=-\frac{\sqrt{23}}{6}+\frac{1}{12}
Divide 24-48\sqrt{23} by 288.
144p^{2}-24p-91=144\left(p-\left(\frac{\sqrt{23}}{6}+\frac{1}{12}\right)\right)\left(p-\left(-\frac{\sqrt{23}}{6}+\frac{1}{12}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{12}+\frac{\sqrt{23}}{6} for x_{1} and \frac{1}{12}-\frac{\sqrt{23}}{6} for x_{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}