Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

-100+9\times 16p^{2}-24p+9
Subtract 120 from 20 to get -100.
-100+144p^{2}-24p+9
Multiply 9 and 16 to get 144.
-91+144p^{2}-24p
Add -100 and 9 to get -91.
factor(-100+9\times 16p^{2}-24p+9)
Subtract 120 from 20 to get -100.
factor(-100+144p^{2}-24p+9)
Multiply 9 and 16 to get 144.
factor(-91+144p^{2}-24p)
Add -100 and 9 to get -91.
144p^{2}-24p-91=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 144\left(-91\right)}}{2\times 144}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-\left(-24\right)±\sqrt{576-4\times 144\left(-91\right)}}{2\times 144}
Square -24.
p=\frac{-\left(-24\right)±\sqrt{576-576\left(-91\right)}}{2\times 144}
Multiply -4 times 144.
p=\frac{-\left(-24\right)±\sqrt{576+52416}}{2\times 144}
Multiply -576 times -91.
p=\frac{-\left(-24\right)±\sqrt{52992}}{2\times 144}
Add 576 to 52416.
p=\frac{-\left(-24\right)±48\sqrt{23}}{2\times 144}
Take the square root of 52992.
p=\frac{24±48\sqrt{23}}{2\times 144}
The opposite of -24 is 24.
p=\frac{24±48\sqrt{23}}{288}
Multiply 2 times 144.
p=\frac{48\sqrt{23}+24}{288}
Now solve the equation p=\frac{24±48\sqrt{23}}{288} when ± is plus. Add 24 to 48\sqrt{23}.
p=\frac{\sqrt{23}}{6}+\frac{1}{12}
Divide 24+48\sqrt{23} by 288.
p=\frac{24-48\sqrt{23}}{288}
Now solve the equation p=\frac{24±48\sqrt{23}}{288} when ± is minus. Subtract 48\sqrt{23} from 24.
p=-\frac{\sqrt{23}}{6}+\frac{1}{12}
Divide 24-48\sqrt{23} by 288.
144p^{2}-24p-91=144\left(p-\left(\frac{\sqrt{23}}{6}+\frac{1}{12}\right)\right)\left(p-\left(-\frac{\sqrt{23}}{6}+\frac{1}{12}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{1}{12}+\frac{\sqrt{23}}{6} for x_{1} and \frac{1}{12}-\frac{\sqrt{23}}{6} for x_{2}.