Evaluate
16
Factor
2^{4}
Share
Copied to clipboard
20-\sqrt{\frac{\frac{2}{3}}{\frac{17}{27}-\frac{9}{27}}+\frac{\frac{1}{2}}{\frac{1}{6}-\frac{1}{24}}}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Least common multiple of 27 and 3 is 27. Convert \frac{17}{27} and \frac{1}{3} to fractions with denominator 27.
20-\sqrt{\frac{\frac{2}{3}}{\frac{17-9}{27}}+\frac{\frac{1}{2}}{\frac{1}{6}-\frac{1}{24}}}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Since \frac{17}{27} and \frac{9}{27} have the same denominator, subtract them by subtracting their numerators.
20-\sqrt{\frac{\frac{2}{3}}{\frac{8}{27}}+\frac{\frac{1}{2}}{\frac{1}{6}-\frac{1}{24}}}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Subtract 9 from 17 to get 8.
20-\sqrt{\frac{2}{3}\times \frac{27}{8}+\frac{\frac{1}{2}}{\frac{1}{6}-\frac{1}{24}}}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Divide \frac{2}{3} by \frac{8}{27} by multiplying \frac{2}{3} by the reciprocal of \frac{8}{27}.
20-\sqrt{\frac{2\times 27}{3\times 8}+\frac{\frac{1}{2}}{\frac{1}{6}-\frac{1}{24}}}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Multiply \frac{2}{3} times \frac{27}{8} by multiplying numerator times numerator and denominator times denominator.
20-\sqrt{\frac{54}{24}+\frac{\frac{1}{2}}{\frac{1}{6}-\frac{1}{24}}}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Do the multiplications in the fraction \frac{2\times 27}{3\times 8}.
20-\sqrt{\frac{9}{4}+\frac{\frac{1}{2}}{\frac{1}{6}-\frac{1}{24}}}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Reduce the fraction \frac{54}{24} to lowest terms by extracting and canceling out 6.
20-\sqrt{\frac{9}{4}+\frac{\frac{1}{2}}{\frac{4}{24}-\frac{1}{24}}}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Least common multiple of 6 and 24 is 24. Convert \frac{1}{6} and \frac{1}{24} to fractions with denominator 24.
20-\sqrt{\frac{9}{4}+\frac{\frac{1}{2}}{\frac{4-1}{24}}}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Since \frac{4}{24} and \frac{1}{24} have the same denominator, subtract them by subtracting their numerators.
20-\sqrt{\frac{9}{4}+\frac{\frac{1}{2}}{\frac{3}{24}}}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Subtract 1 from 4 to get 3.
20-\sqrt{\frac{9}{4}+\frac{\frac{1}{2}}{\frac{1}{8}}}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Reduce the fraction \frac{3}{24} to lowest terms by extracting and canceling out 3.
20-\sqrt{\frac{9}{4}+\frac{1}{2}\times 8}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Divide \frac{1}{2} by \frac{1}{8} by multiplying \frac{1}{2} by the reciprocal of \frac{1}{8}.
20-\sqrt{\frac{9}{4}+\frac{8}{2}}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Multiply \frac{1}{2} and 8 to get \frac{8}{2}.
20-\sqrt{\frac{9}{4}+4}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Divide 8 by 2 to get 4.
20-\sqrt{\frac{9}{4}+\frac{16}{4}}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Convert 4 to fraction \frac{16}{4}.
20-\sqrt{\frac{9+16}{4}}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Since \frac{9}{4} and \frac{16}{4} have the same denominator, add them by adding their numerators.
20-\sqrt{\frac{25}{4}}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Add 9 and 16 to get 25.
20-\frac{5}{2}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Rewrite the square root of the division \frac{25}{4} as the division of square roots \frac{\sqrt{25}}{\sqrt{4}}. Take the square root of both numerator and denominator.
\frac{40}{2}-\frac{5}{2}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Convert 20 to fraction \frac{40}{2}.
\frac{40-5}{2}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Since \frac{40}{2} and \frac{5}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{35}{2}-\frac{3}{5}\left(\frac{7}{8}+\frac{13}{8}\right)
Subtract 5 from 40 to get 35.
\frac{35}{2}-\frac{3}{5}\times \frac{7+13}{8}
Since \frac{7}{8} and \frac{13}{8} have the same denominator, add them by adding their numerators.
\frac{35}{2}-\frac{3}{5}\times \frac{20}{8}
Add 7 and 13 to get 20.
\frac{35}{2}-\frac{3}{5}\times \frac{5}{2}
Reduce the fraction \frac{20}{8} to lowest terms by extracting and canceling out 4.
\frac{35}{2}-\frac{3\times 5}{5\times 2}
Multiply \frac{3}{5} times \frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{35}{2}-\frac{3}{2}
Cancel out 5 in both numerator and denominator.
\frac{35-3}{2}
Since \frac{35}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{32}{2}
Subtract 3 from 35 to get 32.
16
Divide 32 by 2 to get 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}