Solve for a
a=-3
a=2
Share
Copied to clipboard
\left(20a+60\right)\left(a-2\right)=a^{2}+a-6
Use the distributive property to multiply 20 by a+3.
20a^{2}+20a-120=a^{2}+a-6
Use the distributive property to multiply 20a+60 by a-2 and combine like terms.
20a^{2}+20a-120-a^{2}=a-6
Subtract a^{2} from both sides.
19a^{2}+20a-120=a-6
Combine 20a^{2} and -a^{2} to get 19a^{2}.
19a^{2}+20a-120-a=-6
Subtract a from both sides.
19a^{2}+19a-120=-6
Combine 20a and -a to get 19a.
19a^{2}+19a-120+6=0
Add 6 to both sides.
19a^{2}+19a-114=0
Add -120 and 6 to get -114.
a^{2}+a-6=0
Divide both sides by 19.
a+b=1 ab=1\left(-6\right)=-6
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as a^{2}+aa+ba-6. To find a and b, set up a system to be solved.
-1,6 -2,3
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -6.
-1+6=5 -2+3=1
Calculate the sum for each pair.
a=-2 b=3
The solution is the pair that gives sum 1.
\left(a^{2}-2a\right)+\left(3a-6\right)
Rewrite a^{2}+a-6 as \left(a^{2}-2a\right)+\left(3a-6\right).
a\left(a-2\right)+3\left(a-2\right)
Factor out a in the first and 3 in the second group.
\left(a-2\right)\left(a+3\right)
Factor out common term a-2 by using distributive property.
a=2 a=-3
To find equation solutions, solve a-2=0 and a+3=0.
\left(20a+60\right)\left(a-2\right)=a^{2}+a-6
Use the distributive property to multiply 20 by a+3.
20a^{2}+20a-120=a^{2}+a-6
Use the distributive property to multiply 20a+60 by a-2 and combine like terms.
20a^{2}+20a-120-a^{2}=a-6
Subtract a^{2} from both sides.
19a^{2}+20a-120=a-6
Combine 20a^{2} and -a^{2} to get 19a^{2}.
19a^{2}+20a-120-a=-6
Subtract a from both sides.
19a^{2}+19a-120=-6
Combine 20a and -a to get 19a.
19a^{2}+19a-120+6=0
Add 6 to both sides.
19a^{2}+19a-114=0
Add -120 and 6 to get -114.
a=\frac{-19±\sqrt{19^{2}-4\times 19\left(-114\right)}}{2\times 19}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 19 for a, 19 for b, and -114 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-19±\sqrt{361-4\times 19\left(-114\right)}}{2\times 19}
Square 19.
a=\frac{-19±\sqrt{361-76\left(-114\right)}}{2\times 19}
Multiply -4 times 19.
a=\frac{-19±\sqrt{361+8664}}{2\times 19}
Multiply -76 times -114.
a=\frac{-19±\sqrt{9025}}{2\times 19}
Add 361 to 8664.
a=\frac{-19±95}{2\times 19}
Take the square root of 9025.
a=\frac{-19±95}{38}
Multiply 2 times 19.
a=\frac{76}{38}
Now solve the equation a=\frac{-19±95}{38} when ± is plus. Add -19 to 95.
a=2
Divide 76 by 38.
a=-\frac{114}{38}
Now solve the equation a=\frac{-19±95}{38} when ± is minus. Subtract 95 from -19.
a=-3
Divide -114 by 38.
a=2 a=-3
The equation is now solved.
\left(20a+60\right)\left(a-2\right)=a^{2}+a-6
Use the distributive property to multiply 20 by a+3.
20a^{2}+20a-120=a^{2}+a-6
Use the distributive property to multiply 20a+60 by a-2 and combine like terms.
20a^{2}+20a-120-a^{2}=a-6
Subtract a^{2} from both sides.
19a^{2}+20a-120=a-6
Combine 20a^{2} and -a^{2} to get 19a^{2}.
19a^{2}+20a-120-a=-6
Subtract a from both sides.
19a^{2}+19a-120=-6
Combine 20a and -a to get 19a.
19a^{2}+19a=-6+120
Add 120 to both sides.
19a^{2}+19a=114
Add -6 and 120 to get 114.
\frac{19a^{2}+19a}{19}=\frac{114}{19}
Divide both sides by 19.
a^{2}+\frac{19}{19}a=\frac{114}{19}
Dividing by 19 undoes the multiplication by 19.
a^{2}+a=\frac{114}{19}
Divide 19 by 19.
a^{2}+a=6
Divide 114 by 19.
a^{2}+a+\left(\frac{1}{2}\right)^{2}=6+\left(\frac{1}{2}\right)^{2}
Divide 1, the coefficient of the x term, by 2 to get \frac{1}{2}. Then add the square of \frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+a+\frac{1}{4}=6+\frac{1}{4}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}+a+\frac{1}{4}=\frac{25}{4}
Add 6 to \frac{1}{4}.
\left(a+\frac{1}{2}\right)^{2}=\frac{25}{4}
Factor a^{2}+a+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{1}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
a+\frac{1}{2}=\frac{5}{2} a+\frac{1}{2}=-\frac{5}{2}
Simplify.
a=2 a=-3
Subtract \frac{1}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}