Solve for x
x=-\frac{37}{68}\approx -0.544117647
Graph
Share
Copied to clipboard
20\times \frac{1}{2}x+20\times \frac{1}{4}-\left(-x-\frac{1}{2}\right)-\left(-\frac{1}{3}x-\frac{3}{2}\right)=\frac{5}{6}
Use the distributive property to multiply 20 by \frac{1}{2}x+\frac{1}{4}.
\frac{20}{2}x+20\times \frac{1}{4}-\left(-x-\frac{1}{2}\right)-\left(-\frac{1}{3}x-\frac{3}{2}\right)=\frac{5}{6}
Multiply 20 and \frac{1}{2} to get \frac{20}{2}.
10x+20\times \frac{1}{4}-\left(-x-\frac{1}{2}\right)-\left(-\frac{1}{3}x-\frac{3}{2}\right)=\frac{5}{6}
Divide 20 by 2 to get 10.
10x+\frac{20}{4}-\left(-x-\frac{1}{2}\right)-\left(-\frac{1}{3}x-\frac{3}{2}\right)=\frac{5}{6}
Multiply 20 and \frac{1}{4} to get \frac{20}{4}.
10x+5-\left(-x-\frac{1}{2}\right)-\left(-\frac{1}{3}x-\frac{3}{2}\right)=\frac{5}{6}
Divide 20 by 4 to get 5.
10x+5-\left(-x\right)-\left(-\frac{1}{2}\right)-\left(-\frac{1}{3}x-\frac{3}{2}\right)=\frac{5}{6}
To find the opposite of -x-\frac{1}{2}, find the opposite of each term.
10x+5-\left(-x\right)+\frac{1}{2}-\left(-\frac{1}{3}x-\frac{3}{2}\right)=\frac{5}{6}
The opposite of -\frac{1}{2} is \frac{1}{2}.
10x+\frac{10}{2}-\left(-x\right)+\frac{1}{2}-\left(-\frac{1}{3}x-\frac{3}{2}\right)=\frac{5}{6}
Convert 5 to fraction \frac{10}{2}.
10x+\frac{10+1}{2}-\left(-x\right)-\left(-\frac{1}{3}x-\frac{3}{2}\right)=\frac{5}{6}
Since \frac{10}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
10x+\frac{11}{2}-\left(-x\right)-\left(-\frac{1}{3}x-\frac{3}{2}\right)=\frac{5}{6}
Add 10 and 1 to get 11.
10x+\frac{11}{2}-\left(-x\right)-\left(-\frac{1}{3}x\right)-\left(-\frac{3}{2}\right)=\frac{5}{6}
To find the opposite of -\frac{1}{3}x-\frac{3}{2}, find the opposite of each term.
10x+\frac{11}{2}-\left(-x\right)+\frac{1}{3}x-\left(-\frac{3}{2}\right)=\frac{5}{6}
The opposite of -\frac{1}{3}x is \frac{1}{3}x.
10x+\frac{11}{2}-\left(-x\right)+\frac{1}{3}x+\frac{3}{2}=\frac{5}{6}
The opposite of -\frac{3}{2} is \frac{3}{2}.
\frac{31}{3}x+\frac{11}{2}-\left(-x\right)+\frac{3}{2}=\frac{5}{6}
Combine 10x and \frac{1}{3}x to get \frac{31}{3}x.
\frac{31}{3}x+\frac{11+3}{2}-\left(-x\right)=\frac{5}{6}
Since \frac{11}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
\frac{31}{3}x+\frac{14}{2}-\left(-x\right)=\frac{5}{6}
Add 11 and 3 to get 14.
\frac{31}{3}x+7-\left(-x\right)=\frac{5}{6}
Divide 14 by 2 to get 7.
\frac{31}{3}x-\left(-x\right)=\frac{5}{6}-7
Subtract 7 from both sides.
\frac{31}{3}x-\left(-x\right)=\frac{5}{6}-\frac{42}{6}
Convert 7 to fraction \frac{42}{6}.
\frac{31}{3}x-\left(-x\right)=\frac{5-42}{6}
Since \frac{5}{6} and \frac{42}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{31}{3}x-\left(-x\right)=-\frac{37}{6}
Subtract 42 from 5 to get -37.
\frac{31}{3}x+x=-\frac{37}{6}
Multiply -1 and -1 to get 1.
\frac{34}{3}x=-\frac{37}{6}
Combine \frac{31}{3}x and x to get \frac{34}{3}x.
x=-\frac{37}{6}\times \frac{3}{34}
Multiply both sides by \frac{3}{34}, the reciprocal of \frac{34}{3}.
x=\frac{-37\times 3}{6\times 34}
Multiply -\frac{37}{6} times \frac{3}{34} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-111}{204}
Do the multiplications in the fraction \frac{-37\times 3}{6\times 34}.
x=-\frac{37}{68}
Reduce the fraction \frac{-111}{204} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}