Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

20x^{2}-76x+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-76\right)±\sqrt{\left(-76\right)^{2}-4\times 20\times 4}}{2\times 20}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-76\right)±\sqrt{5776-4\times 20\times 4}}{2\times 20}
Square -76.
x=\frac{-\left(-76\right)±\sqrt{5776-80\times 4}}{2\times 20}
Multiply -4 times 20.
x=\frac{-\left(-76\right)±\sqrt{5776-320}}{2\times 20}
Multiply -80 times 4.
x=\frac{-\left(-76\right)±\sqrt{5456}}{2\times 20}
Add 5776 to -320.
x=\frac{-\left(-76\right)±4\sqrt{341}}{2\times 20}
Take the square root of 5456.
x=\frac{76±4\sqrt{341}}{2\times 20}
The opposite of -76 is 76.
x=\frac{76±4\sqrt{341}}{40}
Multiply 2 times 20.
x=\frac{4\sqrt{341}+76}{40}
Now solve the equation x=\frac{76±4\sqrt{341}}{40} when ± is plus. Add 76 to 4\sqrt{341}.
x=\frac{\sqrt{341}+19}{10}
Divide 76+4\sqrt{341} by 40.
x=\frac{76-4\sqrt{341}}{40}
Now solve the equation x=\frac{76±4\sqrt{341}}{40} when ± is minus. Subtract 4\sqrt{341} from 76.
x=\frac{19-\sqrt{341}}{10}
Divide 76-4\sqrt{341} by 40.
20x^{2}-76x+4=20\left(x-\frac{\sqrt{341}+19}{10}\right)\left(x-\frac{19-\sqrt{341}}{10}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{19+\sqrt{341}}{10} for x_{1} and \frac{19-\sqrt{341}}{10} for x_{2}.