Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

a+b=-17 ab=20\left(-10\right)=-200
Factor the expression by grouping. First, the expression needs to be rewritten as 20x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
1,-200 2,-100 4,-50 5,-40 8,-25 10,-20
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -200.
1-200=-199 2-100=-98 4-50=-46 5-40=-35 8-25=-17 10-20=-10
Calculate the sum for each pair.
a=-25 b=8
The solution is the pair that gives sum -17.
\left(20x^{2}-25x\right)+\left(8x-10\right)
Rewrite 20x^{2}-17x-10 as \left(20x^{2}-25x\right)+\left(8x-10\right).
5x\left(4x-5\right)+2\left(4x-5\right)
Factor out 5x in the first and 2 in the second group.
\left(4x-5\right)\left(5x+2\right)
Factor out common term 4x-5 by using distributive property.
20x^{2}-17x-10=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 20\left(-10\right)}}{2\times 20}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 20\left(-10\right)}}{2\times 20}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289-80\left(-10\right)}}{2\times 20}
Multiply -4 times 20.
x=\frac{-\left(-17\right)±\sqrt{289+800}}{2\times 20}
Multiply -80 times -10.
x=\frac{-\left(-17\right)±\sqrt{1089}}{2\times 20}
Add 289 to 800.
x=\frac{-\left(-17\right)±33}{2\times 20}
Take the square root of 1089.
x=\frac{17±33}{2\times 20}
The opposite of -17 is 17.
x=\frac{17±33}{40}
Multiply 2 times 20.
x=\frac{50}{40}
Now solve the equation x=\frac{17±33}{40} when ± is plus. Add 17 to 33.
x=\frac{5}{4}
Reduce the fraction \frac{50}{40} to lowest terms by extracting and canceling out 10.
x=-\frac{16}{40}
Now solve the equation x=\frac{17±33}{40} when ± is minus. Subtract 33 from 17.
x=-\frac{2}{5}
Reduce the fraction \frac{-16}{40} to lowest terms by extracting and canceling out 8.
20x^{2}-17x-10=20\left(x-\frac{5}{4}\right)\left(x-\left(-\frac{2}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{4} for x_{1} and -\frac{2}{5} for x_{2}.
20x^{2}-17x-10=20\left(x-\frac{5}{4}\right)\left(x+\frac{2}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
20x^{2}-17x-10=20\times \frac{4x-5}{4}\left(x+\frac{2}{5}\right)
Subtract \frac{5}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
20x^{2}-17x-10=20\times \frac{4x-5}{4}\times \frac{5x+2}{5}
Add \frac{2}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
20x^{2}-17x-10=20\times \frac{\left(4x-5\right)\left(5x+2\right)}{4\times 5}
Multiply \frac{4x-5}{4} times \frac{5x+2}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
20x^{2}-17x-10=20\times \frac{\left(4x-5\right)\left(5x+2\right)}{20}
Multiply 4 times 5.
20x^{2}-17x-10=\left(4x-5\right)\left(5x+2\right)
Cancel out 20, the greatest common factor in 20 and 20.