Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

20x^{2}-164-56x^{2}=-59x-36
Subtract 56x^{2} from both sides.
-36x^{2}-164=-59x-36
Combine 20x^{2} and -56x^{2} to get -36x^{2}.
-36x^{2}-164+59x=-36
Add 59x to both sides.
-36x^{2}-164+59x+36=0
Add 36 to both sides.
-36x^{2}-128+59x=0
Add -164 and 36 to get -128.
-36x^{2}+59x-128=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-59±\sqrt{59^{2}-4\left(-36\right)\left(-128\right)}}{2\left(-36\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -36 for a, 59 for b, and -128 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-59±\sqrt{3481-4\left(-36\right)\left(-128\right)}}{2\left(-36\right)}
Square 59.
x=\frac{-59±\sqrt{3481+144\left(-128\right)}}{2\left(-36\right)}
Multiply -4 times -36.
x=\frac{-59±\sqrt{3481-18432}}{2\left(-36\right)}
Multiply 144 times -128.
x=\frac{-59±\sqrt{-14951}}{2\left(-36\right)}
Add 3481 to -18432.
x=\frac{-59±\sqrt{14951}i}{2\left(-36\right)}
Take the square root of -14951.
x=\frac{-59±\sqrt{14951}i}{-72}
Multiply 2 times -36.
x=\frac{-59+\sqrt{14951}i}{-72}
Now solve the equation x=\frac{-59±\sqrt{14951}i}{-72} when ± is plus. Add -59 to i\sqrt{14951}.
x=\frac{-\sqrt{14951}i+59}{72}
Divide -59+i\sqrt{14951} by -72.
x=\frac{-\sqrt{14951}i-59}{-72}
Now solve the equation x=\frac{-59±\sqrt{14951}i}{-72} when ± is minus. Subtract i\sqrt{14951} from -59.
x=\frac{59+\sqrt{14951}i}{72}
Divide -59-i\sqrt{14951} by -72.
x=\frac{-\sqrt{14951}i+59}{72} x=\frac{59+\sqrt{14951}i}{72}
The equation is now solved.
20x^{2}-164-56x^{2}=-59x-36
Subtract 56x^{2} from both sides.
-36x^{2}-164=-59x-36
Combine 20x^{2} and -56x^{2} to get -36x^{2}.
-36x^{2}-164+59x=-36
Add 59x to both sides.
-36x^{2}+59x=-36+164
Add 164 to both sides.
-36x^{2}+59x=128
Add -36 and 164 to get 128.
\frac{-36x^{2}+59x}{-36}=\frac{128}{-36}
Divide both sides by -36.
x^{2}+\frac{59}{-36}x=\frac{128}{-36}
Dividing by -36 undoes the multiplication by -36.
x^{2}-\frac{59}{36}x=\frac{128}{-36}
Divide 59 by -36.
x^{2}-\frac{59}{36}x=-\frac{32}{9}
Reduce the fraction \frac{128}{-36} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{59}{36}x+\left(-\frac{59}{72}\right)^{2}=-\frac{32}{9}+\left(-\frac{59}{72}\right)^{2}
Divide -\frac{59}{36}, the coefficient of the x term, by 2 to get -\frac{59}{72}. Then add the square of -\frac{59}{72} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{59}{36}x+\frac{3481}{5184}=-\frac{32}{9}+\frac{3481}{5184}
Square -\frac{59}{72} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{59}{36}x+\frac{3481}{5184}=-\frac{14951}{5184}
Add -\frac{32}{9} to \frac{3481}{5184} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{59}{72}\right)^{2}=-\frac{14951}{5184}
Factor x^{2}-\frac{59}{36}x+\frac{3481}{5184}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{59}{72}\right)^{2}}=\sqrt{-\frac{14951}{5184}}
Take the square root of both sides of the equation.
x-\frac{59}{72}=\frac{\sqrt{14951}i}{72} x-\frac{59}{72}=-\frac{\sqrt{14951}i}{72}
Simplify.
x=\frac{59+\sqrt{14951}i}{72} x=\frac{-\sqrt{14951}i+59}{72}
Add \frac{59}{72} to both sides of the equation.