Factor
\left(4x-5\right)\left(5x+3\right)
Evaluate
\left(4x-5\right)\left(5x+3\right)
Graph
Share
Copied to clipboard
a+b=-13 ab=20\left(-15\right)=-300
Factor the expression by grouping. First, the expression needs to be rewritten as 20x^{2}+ax+bx-15. To find a and b, set up a system to be solved.
1,-300 2,-150 3,-100 4,-75 5,-60 6,-50 10,-30 12,-25 15,-20
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -300.
1-300=-299 2-150=-148 3-100=-97 4-75=-71 5-60=-55 6-50=-44 10-30=-20 12-25=-13 15-20=-5
Calculate the sum for each pair.
a=-25 b=12
The solution is the pair that gives sum -13.
\left(20x^{2}-25x\right)+\left(12x-15\right)
Rewrite 20x^{2}-13x-15 as \left(20x^{2}-25x\right)+\left(12x-15\right).
5x\left(4x-5\right)+3\left(4x-5\right)
Factor out 5x in the first and 3 in the second group.
\left(4x-5\right)\left(5x+3\right)
Factor out common term 4x-5 by using distributive property.
20x^{2}-13x-15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 20\left(-15\right)}}{2\times 20}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 20\left(-15\right)}}{2\times 20}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169-80\left(-15\right)}}{2\times 20}
Multiply -4 times 20.
x=\frac{-\left(-13\right)±\sqrt{169+1200}}{2\times 20}
Multiply -80 times -15.
x=\frac{-\left(-13\right)±\sqrt{1369}}{2\times 20}
Add 169 to 1200.
x=\frac{-\left(-13\right)±37}{2\times 20}
Take the square root of 1369.
x=\frac{13±37}{2\times 20}
The opposite of -13 is 13.
x=\frac{13±37}{40}
Multiply 2 times 20.
x=\frac{50}{40}
Now solve the equation x=\frac{13±37}{40} when ± is plus. Add 13 to 37.
x=\frac{5}{4}
Reduce the fraction \frac{50}{40} to lowest terms by extracting and canceling out 10.
x=-\frac{24}{40}
Now solve the equation x=\frac{13±37}{40} when ± is minus. Subtract 37 from 13.
x=-\frac{3}{5}
Reduce the fraction \frac{-24}{40} to lowest terms by extracting and canceling out 8.
20x^{2}-13x-15=20\left(x-\frac{5}{4}\right)\left(x-\left(-\frac{3}{5}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{4} for x_{1} and -\frac{3}{5} for x_{2}.
20x^{2}-13x-15=20\left(x-\frac{5}{4}\right)\left(x+\frac{3}{5}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
20x^{2}-13x-15=20\times \frac{4x-5}{4}\left(x+\frac{3}{5}\right)
Subtract \frac{5}{4} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
20x^{2}-13x-15=20\times \frac{4x-5}{4}\times \frac{5x+3}{5}
Add \frac{3}{5} to x by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
20x^{2}-13x-15=20\times \frac{\left(4x-5\right)\left(5x+3\right)}{4\times 5}
Multiply \frac{4x-5}{4} times \frac{5x+3}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
20x^{2}-13x-15=20\times \frac{\left(4x-5\right)\left(5x+3\right)}{20}
Multiply 4 times 5.
20x^{2}-13x-15=\left(4x-5\right)\left(5x+3\right)
Cancel out 20, the greatest common factor in 20 and 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}