Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

20x^{2}+48x+\frac{1269}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-48±\sqrt{48^{2}-4\times 20\times \frac{1269}{2}}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, 48 for b, and \frac{1269}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-48±\sqrt{2304-4\times 20\times \frac{1269}{2}}}{2\times 20}
Square 48.
x=\frac{-48±\sqrt{2304-80\times \frac{1269}{2}}}{2\times 20}
Multiply -4 times 20.
x=\frac{-48±\sqrt{2304-50760}}{2\times 20}
Multiply -80 times \frac{1269}{2}.
x=\frac{-48±\sqrt{-48456}}{2\times 20}
Add 2304 to -50760.
x=\frac{-48±6\sqrt{1346}i}{2\times 20}
Take the square root of -48456.
x=\frac{-48±6\sqrt{1346}i}{40}
Multiply 2 times 20.
x=\frac{-48+6\sqrt{1346}i}{40}
Now solve the equation x=\frac{-48±6\sqrt{1346}i}{40} when ± is plus. Add -48 to 6i\sqrt{1346}.
x=\frac{3\sqrt{1346}i}{20}-\frac{6}{5}
Divide -48+6i\sqrt{1346} by 40.
x=\frac{-6\sqrt{1346}i-48}{40}
Now solve the equation x=\frac{-48±6\sqrt{1346}i}{40} when ± is minus. Subtract 6i\sqrt{1346} from -48.
x=-\frac{3\sqrt{1346}i}{20}-\frac{6}{5}
Divide -48-6i\sqrt{1346} by 40.
x=\frac{3\sqrt{1346}i}{20}-\frac{6}{5} x=-\frac{3\sqrt{1346}i}{20}-\frac{6}{5}
The equation is now solved.
20x^{2}+48x+\frac{1269}{2}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
20x^{2}+48x+\frac{1269}{2}-\frac{1269}{2}=-\frac{1269}{2}
Subtract \frac{1269}{2} from both sides of the equation.
20x^{2}+48x=-\frac{1269}{2}
Subtracting \frac{1269}{2} from itself leaves 0.
\frac{20x^{2}+48x}{20}=-\frac{\frac{1269}{2}}{20}
Divide both sides by 20.
x^{2}+\frac{48}{20}x=-\frac{\frac{1269}{2}}{20}
Dividing by 20 undoes the multiplication by 20.
x^{2}+\frac{12}{5}x=-\frac{\frac{1269}{2}}{20}
Reduce the fraction \frac{48}{20} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{12}{5}x=-\frac{1269}{40}
Divide -\frac{1269}{2} by 20.
x^{2}+\frac{12}{5}x+\left(\frac{6}{5}\right)^{2}=-\frac{1269}{40}+\left(\frac{6}{5}\right)^{2}
Divide \frac{12}{5}, the coefficient of the x term, by 2 to get \frac{6}{5}. Then add the square of \frac{6}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{12}{5}x+\frac{36}{25}=-\frac{1269}{40}+\frac{36}{25}
Square \frac{6}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{12}{5}x+\frac{36}{25}=-\frac{6057}{200}
Add -\frac{1269}{40} to \frac{36}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{6}{5}\right)^{2}=-\frac{6057}{200}
Factor x^{2}+\frac{12}{5}x+\frac{36}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{6}{5}\right)^{2}}=\sqrt{-\frac{6057}{200}}
Take the square root of both sides of the equation.
x+\frac{6}{5}=\frac{3\sqrt{1346}i}{20} x+\frac{6}{5}=-\frac{3\sqrt{1346}i}{20}
Simplify.
x=\frac{3\sqrt{1346}i}{20}-\frac{6}{5} x=-\frac{3\sqrt{1346}i}{20}-\frac{6}{5}
Subtract \frac{6}{5} from both sides of the equation.