Solve for x
x = -\frac{23}{20} = -1\frac{3}{20} = -1.15
x=\frac{1}{10}=0.1
Graph
Share
Copied to clipboard
20x^{2}+21x-\frac{23}{10}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-21±\sqrt{21^{2}-4\times 20\left(-\frac{23}{10}\right)}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, 21 for b, and -\frac{23}{10} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-21±\sqrt{441-4\times 20\left(-\frac{23}{10}\right)}}{2\times 20}
Square 21.
x=\frac{-21±\sqrt{441-80\left(-\frac{23}{10}\right)}}{2\times 20}
Multiply -4 times 20.
x=\frac{-21±\sqrt{441+184}}{2\times 20}
Multiply -80 times -\frac{23}{10}.
x=\frac{-21±\sqrt{625}}{2\times 20}
Add 441 to 184.
x=\frac{-21±25}{2\times 20}
Take the square root of 625.
x=\frac{-21±25}{40}
Multiply 2 times 20.
x=\frac{4}{40}
Now solve the equation x=\frac{-21±25}{40} when ± is plus. Add -21 to 25.
x=\frac{1}{10}
Reduce the fraction \frac{4}{40} to lowest terms by extracting and canceling out 4.
x=-\frac{46}{40}
Now solve the equation x=\frac{-21±25}{40} when ± is minus. Subtract 25 from -21.
x=-\frac{23}{20}
Reduce the fraction \frac{-46}{40} to lowest terms by extracting and canceling out 2.
x=\frac{1}{10} x=-\frac{23}{20}
The equation is now solved.
20x^{2}+21x-\frac{23}{10}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
20x^{2}+21x-\frac{23}{10}-\left(-\frac{23}{10}\right)=-\left(-\frac{23}{10}\right)
Add \frac{23}{10} to both sides of the equation.
20x^{2}+21x=-\left(-\frac{23}{10}\right)
Subtracting -\frac{23}{10} from itself leaves 0.
20x^{2}+21x=\frac{23}{10}
Subtract -\frac{23}{10} from 0.
\frac{20x^{2}+21x}{20}=\frac{\frac{23}{10}}{20}
Divide both sides by 20.
x^{2}+\frac{21}{20}x=\frac{\frac{23}{10}}{20}
Dividing by 20 undoes the multiplication by 20.
x^{2}+\frac{21}{20}x=\frac{23}{200}
Divide \frac{23}{10} by 20.
x^{2}+\frac{21}{20}x+\left(\frac{21}{40}\right)^{2}=\frac{23}{200}+\left(\frac{21}{40}\right)^{2}
Divide \frac{21}{20}, the coefficient of the x term, by 2 to get \frac{21}{40}. Then add the square of \frac{21}{40} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{21}{20}x+\frac{441}{1600}=\frac{23}{200}+\frac{441}{1600}
Square \frac{21}{40} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{21}{20}x+\frac{441}{1600}=\frac{25}{64}
Add \frac{23}{200} to \frac{441}{1600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{21}{40}\right)^{2}=\frac{25}{64}
Factor x^{2}+\frac{21}{20}x+\frac{441}{1600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{21}{40}\right)^{2}}=\sqrt{\frac{25}{64}}
Take the square root of both sides of the equation.
x+\frac{21}{40}=\frac{5}{8} x+\frac{21}{40}=-\frac{5}{8}
Simplify.
x=\frac{1}{10} x=-\frac{23}{20}
Subtract \frac{21}{40} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}