Solve for p
p=\frac{3}{4}=0.75
p=0
Share
Copied to clipboard
p\left(20p-15\right)=0
Factor out p.
p=0 p=\frac{3}{4}
To find equation solutions, solve p=0 and 20p-15=0.
20p^{2}-15p=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, -15 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-15\right)±15}{2\times 20}
Take the square root of \left(-15\right)^{2}.
p=\frac{15±15}{2\times 20}
The opposite of -15 is 15.
p=\frac{15±15}{40}
Multiply 2 times 20.
p=\frac{30}{40}
Now solve the equation p=\frac{15±15}{40} when ± is plus. Add 15 to 15.
p=\frac{3}{4}
Reduce the fraction \frac{30}{40} to lowest terms by extracting and canceling out 10.
p=\frac{0}{40}
Now solve the equation p=\frac{15±15}{40} when ± is minus. Subtract 15 from 15.
p=0
Divide 0 by 40.
p=\frac{3}{4} p=0
The equation is now solved.
20p^{2}-15p=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{20p^{2}-15p}{20}=\frac{0}{20}
Divide both sides by 20.
p^{2}+\left(-\frac{15}{20}\right)p=\frac{0}{20}
Dividing by 20 undoes the multiplication by 20.
p^{2}-\frac{3}{4}p=\frac{0}{20}
Reduce the fraction \frac{-15}{20} to lowest terms by extracting and canceling out 5.
p^{2}-\frac{3}{4}p=0
Divide 0 by 20.
p^{2}-\frac{3}{4}p+\left(-\frac{3}{8}\right)^{2}=\left(-\frac{3}{8}\right)^{2}
Divide -\frac{3}{4}, the coefficient of the x term, by 2 to get -\frac{3}{8}. Then add the square of -\frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
p^{2}-\frac{3}{4}p+\frac{9}{64}=\frac{9}{64}
Square -\frac{3}{8} by squaring both the numerator and the denominator of the fraction.
\left(p-\frac{3}{8}\right)^{2}=\frac{9}{64}
Factor p^{2}-\frac{3}{4}p+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{3}{8}\right)^{2}}=\sqrt{\frac{9}{64}}
Take the square root of both sides of the equation.
p-\frac{3}{8}=\frac{3}{8} p-\frac{3}{8}=-\frac{3}{8}
Simplify.
p=\frac{3}{4} p=0
Add \frac{3}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}