Factor
-5\left(3a-4\right)\left(a+1\right)a^{2}
Evaluate
-5\left(3a-4\right)\left(a+1\right)a^{2}
Share
Copied to clipboard
5\left(4a^{2}+a^{3}-3a^{4}\right)
Factor out 5.
a^{2}\left(4+a-3a^{2}\right)
Consider 4a^{2}+a^{3}-3a^{4}. Factor out a^{2}.
-3a^{2}+a+4
Consider 4+a-3a^{2}. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
p+q=1 pq=-3\times 4=-12
Factor the expression by grouping. First, the expression needs to be rewritten as -3a^{2}+pa+qa+4. To find p and q, set up a system to be solved.
-1,12 -2,6 -3,4
Since pq is negative, p and q have the opposite signs. Since p+q is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -12.
-1+12=11 -2+6=4 -3+4=1
Calculate the sum for each pair.
p=4 q=-3
The solution is the pair that gives sum 1.
\left(-3a^{2}+4a\right)+\left(-3a+4\right)
Rewrite -3a^{2}+a+4 as \left(-3a^{2}+4a\right)+\left(-3a+4\right).
-a\left(3a-4\right)-\left(3a-4\right)
Factor out -a in the first and -1 in the second group.
\left(3a-4\right)\left(-a-1\right)
Factor out common term 3a-4 by using distributive property.
5a^{2}\left(3a-4\right)\left(-a-1\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}