Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(x-2\right)\left(60-x-2\right)-16=\frac{14240}{20}
Divide both sides by 20.
\left(x-2\right)\left(60-x-2\right)-16=712
Divide 14240 by 20 to get 712.
\left(x-2\right)\left(58-x\right)-16=712
Subtract 2 from 60 to get 58.
60x-x^{2}-116-16=712
Use the distributive property to multiply x-2 by 58-x and combine like terms.
60x-x^{2}-132=712
Subtract 16 from -116 to get -132.
60x-x^{2}-132-712=0
Subtract 712 from both sides.
60x-x^{2}-844=0
Subtract 712 from -132 to get -844.
-x^{2}+60x-844=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-60±\sqrt{60^{2}-4\left(-1\right)\left(-844\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 60 for b, and -844 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-60±\sqrt{3600-4\left(-1\right)\left(-844\right)}}{2\left(-1\right)}
Square 60.
x=\frac{-60±\sqrt{3600+4\left(-844\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-60±\sqrt{3600-3376}}{2\left(-1\right)}
Multiply 4 times -844.
x=\frac{-60±\sqrt{224}}{2\left(-1\right)}
Add 3600 to -3376.
x=\frac{-60±4\sqrt{14}}{2\left(-1\right)}
Take the square root of 224.
x=\frac{-60±4\sqrt{14}}{-2}
Multiply 2 times -1.
x=\frac{4\sqrt{14}-60}{-2}
Now solve the equation x=\frac{-60±4\sqrt{14}}{-2} when ± is plus. Add -60 to 4\sqrt{14}.
x=30-2\sqrt{14}
Divide -60+4\sqrt{14} by -2.
x=\frac{-4\sqrt{14}-60}{-2}
Now solve the equation x=\frac{-60±4\sqrt{14}}{-2} when ± is minus. Subtract 4\sqrt{14} from -60.
x=2\sqrt{14}+30
Divide -60-4\sqrt{14} by -2.
x=30-2\sqrt{14} x=2\sqrt{14}+30
The equation is now solved.
\left(x-2\right)\left(60-x-2\right)-16=\frac{14240}{20}
Divide both sides by 20.
\left(x-2\right)\left(60-x-2\right)-16=712
Divide 14240 by 20 to get 712.
\left(x-2\right)\left(58-x\right)-16=712
Subtract 2 from 60 to get 58.
60x-x^{2}-116-16=712
Use the distributive property to multiply x-2 by 58-x and combine like terms.
60x-x^{2}-132=712
Subtract 16 from -116 to get -132.
60x-x^{2}=712+132
Add 132 to both sides.
60x-x^{2}=844
Add 712 and 132 to get 844.
-x^{2}+60x=844
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}+60x}{-1}=\frac{844}{-1}
Divide both sides by -1.
x^{2}+\frac{60}{-1}x=\frac{844}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-60x=\frac{844}{-1}
Divide 60 by -1.
x^{2}-60x=-844
Divide 844 by -1.
x^{2}-60x+\left(-30\right)^{2}=-844+\left(-30\right)^{2}
Divide -60, the coefficient of the x term, by 2 to get -30. Then add the square of -30 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-60x+900=-844+900
Square -30.
x^{2}-60x+900=56
Add -844 to 900.
\left(x-30\right)^{2}=56
Factor x^{2}-60x+900. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-30\right)^{2}}=\sqrt{56}
Take the square root of both sides of the equation.
x-30=2\sqrt{14} x-30=-2\sqrt{14}
Simplify.
x=2\sqrt{14}+30 x=30-2\sqrt{14}
Add 30 to both sides of the equation.