Solve for x
x = -\frac{22}{3} = -7\frac{1}{3} \approx -7.333333333
Graph
Share
Copied to clipboard
\frac{20}{9}=-\frac{1}{3}\left(x+\frac{2}{3}\right)
Fraction \frac{-1}{3} can be rewritten as -\frac{1}{3} by extracting the negative sign.
\frac{20}{9}=-\frac{1}{3}x-\frac{1}{3}\times \frac{2}{3}
Use the distributive property to multiply -\frac{1}{3} by x+\frac{2}{3}.
\frac{20}{9}=-\frac{1}{3}x+\frac{-2}{3\times 3}
Multiply -\frac{1}{3} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{20}{9}=-\frac{1}{3}x+\frac{-2}{9}
Do the multiplications in the fraction \frac{-2}{3\times 3}.
\frac{20}{9}=-\frac{1}{3}x-\frac{2}{9}
Fraction \frac{-2}{9} can be rewritten as -\frac{2}{9} by extracting the negative sign.
-\frac{1}{3}x-\frac{2}{9}=\frac{20}{9}
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{3}x=\frac{20}{9}+\frac{2}{9}
Add \frac{2}{9} to both sides.
-\frac{1}{3}x=\frac{20+2}{9}
Since \frac{20}{9} and \frac{2}{9} have the same denominator, add them by adding their numerators.
-\frac{1}{3}x=\frac{22}{9}
Add 20 and 2 to get 22.
x=\frac{22}{9}\left(-3\right)
Multiply both sides by -3, the reciprocal of -\frac{1}{3}.
x=\frac{22\left(-3\right)}{9}
Express \frac{22}{9}\left(-3\right) as a single fraction.
x=\frac{-66}{9}
Multiply 22 and -3 to get -66.
x=-\frac{22}{3}
Reduce the fraction \frac{-66}{9} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}