Evaluate
-\frac{5}{12}+\frac{6}{n}
Factor
-\frac{\frac{1}{12}\left(5n-72\right)}{n}
Share
Copied to clipboard
\frac{20}{12}+2\times \frac{4}{n}-\frac{2}{n}-5\times \frac{5}{12}
Multiply 20 and \frac{1}{12} to get \frac{20}{12}.
\frac{5}{3}+2\times \frac{4}{n}-\frac{2}{n}-5\times \frac{5}{12}
Reduce the fraction \frac{20}{12} to lowest terms by extracting and canceling out 4.
\frac{5}{3}+\frac{2\times 4}{n}-\frac{2}{n}-5\times \frac{5}{12}
Express 2\times \frac{4}{n} as a single fraction.
\frac{5}{3}+\frac{2\times 4}{n}-\frac{2}{n}+\frac{-5\times 5}{12}
Express -5\times \frac{5}{12} as a single fraction.
\frac{5}{3}+\frac{2\times 4}{n}-\frac{2}{n}+\frac{-25}{12}
Multiply -5 and 5 to get -25.
\frac{5}{3}+\frac{2\times 4}{n}-\frac{2}{n}-\frac{25}{12}
Fraction \frac{-25}{12} can be rewritten as -\frac{25}{12} by extracting the negative sign.
\frac{20}{12}+\frac{2\times 4}{n}-\frac{2}{n}-\frac{25}{12}
Least common multiple of 3 and 12 is 12. Convert \frac{5}{3} and \frac{25}{12} to fractions with denominator 12.
\frac{20-25}{12}+\frac{2\times 4}{n}-\frac{2}{n}
Since \frac{20}{12} and \frac{25}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{12}+\frac{2\times 4}{n}-\frac{2}{n}
Subtract 25 from 20 to get -5.
-\frac{5n}{12n}+\frac{12\times 2\times 4}{12n}-\frac{2}{n}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 12 and n is 12n. Multiply -\frac{5}{12} times \frac{n}{n}. Multiply \frac{2\times 4}{n} times \frac{12}{12}.
\frac{-5n+12\times 2\times 4}{12n}-\frac{2}{n}
Since -\frac{5n}{12n} and \frac{12\times 2\times 4}{12n} have the same denominator, add them by adding their numerators.
\frac{-5n+96}{12n}-\frac{2}{n}
Do the multiplications in -5n+12\times 2\times 4.
\frac{-5n+96}{12n}-\frac{2\times 12}{12n}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 12n and n is 12n. Multiply \frac{2}{n} times \frac{12}{12}.
\frac{-5n+96-2\times 12}{12n}
Since \frac{-5n+96}{12n} and \frac{2\times 12}{12n} have the same denominator, subtract them by subtracting their numerators.
\frac{-5n+96-24}{12n}
Do the multiplications in -5n+96-2\times 12.
\frac{-5n+72}{12n}
Combine like terms in -5n+96-24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}