20 \% +10 \% \times 69+32x-36 \div 6+22=33+44 \% \times x
Solve for x
x=\frac{165}{526}\approx 0.313688213
Graph
Share
Copied to clipboard
\frac{1}{5}+\frac{10}{100}\times 69+32x-\frac{36}{6}+22=33+\frac{44}{100}x
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\frac{1}{5}+\frac{1}{10}\times 69+32x-\frac{36}{6}+22=33+\frac{44}{100}x
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
\frac{1}{5}+\frac{69}{10}+32x-\frac{36}{6}+22=33+\frac{44}{100}x
Multiply \frac{1}{10} and 69 to get \frac{69}{10}.
\frac{2}{10}+\frac{69}{10}+32x-\frac{36}{6}+22=33+\frac{44}{100}x
Least common multiple of 5 and 10 is 10. Convert \frac{1}{5} and \frac{69}{10} to fractions with denominator 10.
\frac{2+69}{10}+32x-\frac{36}{6}+22=33+\frac{44}{100}x
Since \frac{2}{10} and \frac{69}{10} have the same denominator, add them by adding their numerators.
\frac{71}{10}+32x-\frac{36}{6}+22=33+\frac{44}{100}x
Add 2 and 69 to get 71.
\frac{71}{10}+32x-6+22=33+\frac{44}{100}x
Divide 36 by 6 to get 6.
\frac{71}{10}+32x-\frac{60}{10}+22=33+\frac{44}{100}x
Convert 6 to fraction \frac{60}{10}.
\frac{71-60}{10}+32x+22=33+\frac{44}{100}x
Since \frac{71}{10} and \frac{60}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{11}{10}+32x+22=33+\frac{44}{100}x
Subtract 60 from 71 to get 11.
\frac{11}{10}+32x+\frac{220}{10}=33+\frac{44}{100}x
Convert 22 to fraction \frac{220}{10}.
\frac{11+220}{10}+32x=33+\frac{44}{100}x
Since \frac{11}{10} and \frac{220}{10} have the same denominator, add them by adding their numerators.
\frac{231}{10}+32x=33+\frac{44}{100}x
Add 11 and 220 to get 231.
\frac{231}{10}+32x=33+\frac{11}{25}x
Reduce the fraction \frac{44}{100} to lowest terms by extracting and canceling out 4.
\frac{231}{10}+32x-\frac{11}{25}x=33
Subtract \frac{11}{25}x from both sides.
\frac{231}{10}+\frac{789}{25}x=33
Combine 32x and -\frac{11}{25}x to get \frac{789}{25}x.
\frac{789}{25}x=33-\frac{231}{10}
Subtract \frac{231}{10} from both sides.
\frac{789}{25}x=\frac{330}{10}-\frac{231}{10}
Convert 33 to fraction \frac{330}{10}.
\frac{789}{25}x=\frac{330-231}{10}
Since \frac{330}{10} and \frac{231}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{789}{25}x=\frac{99}{10}
Subtract 231 from 330 to get 99.
x=\frac{99}{10}\times \frac{25}{789}
Multiply both sides by \frac{25}{789}, the reciprocal of \frac{789}{25}.
x=\frac{99\times 25}{10\times 789}
Multiply \frac{99}{10} times \frac{25}{789} by multiplying numerator times numerator and denominator times denominator.
x=\frac{2475}{7890}
Do the multiplications in the fraction \frac{99\times 25}{10\times 789}.
x=\frac{165}{526}
Reduce the fraction \frac{2475}{7890} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}