20 \% \times x+8 \% \times 40=12 \% \times (x+40)
Solve for x
x=20
Graph
Share
Copied to clipboard
\frac{1}{5}x+\frac{8}{100}\times 40=\frac{12}{100}\left(x+40\right)
Reduce the fraction \frac{20}{100} to lowest terms by extracting and canceling out 20.
\frac{1}{5}x+\frac{2}{25}\times 40=\frac{12}{100}\left(x+40\right)
Reduce the fraction \frac{8}{100} to lowest terms by extracting and canceling out 4.
\frac{1}{5}x+\frac{2\times 40}{25}=\frac{12}{100}\left(x+40\right)
Express \frac{2}{25}\times 40 as a single fraction.
\frac{1}{5}x+\frac{80}{25}=\frac{12}{100}\left(x+40\right)
Multiply 2 and 40 to get 80.
\frac{1}{5}x+\frac{16}{5}=\frac{12}{100}\left(x+40\right)
Reduce the fraction \frac{80}{25} to lowest terms by extracting and canceling out 5.
\frac{1}{5}x+\frac{16}{5}=\frac{3}{25}\left(x+40\right)
Reduce the fraction \frac{12}{100} to lowest terms by extracting and canceling out 4.
\frac{1}{5}x+\frac{16}{5}=\frac{3}{25}x+\frac{3}{25}\times 40
Use the distributive property to multiply \frac{3}{25} by x+40.
\frac{1}{5}x+\frac{16}{5}=\frac{3}{25}x+\frac{3\times 40}{25}
Express \frac{3}{25}\times 40 as a single fraction.
\frac{1}{5}x+\frac{16}{5}=\frac{3}{25}x+\frac{120}{25}
Multiply 3 and 40 to get 120.
\frac{1}{5}x+\frac{16}{5}=\frac{3}{25}x+\frac{24}{5}
Reduce the fraction \frac{120}{25} to lowest terms by extracting and canceling out 5.
\frac{1}{5}x+\frac{16}{5}-\frac{3}{25}x=\frac{24}{5}
Subtract \frac{3}{25}x from both sides.
\frac{2}{25}x+\frac{16}{5}=\frac{24}{5}
Combine \frac{1}{5}x and -\frac{3}{25}x to get \frac{2}{25}x.
\frac{2}{25}x=\frac{24}{5}-\frac{16}{5}
Subtract \frac{16}{5} from both sides.
\frac{2}{25}x=\frac{24-16}{5}
Since \frac{24}{5} and \frac{16}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{25}x=\frac{8}{5}
Subtract 16 from 24 to get 8.
x=\frac{8}{5}\times \frac{25}{2}
Multiply both sides by \frac{25}{2}, the reciprocal of \frac{2}{25}.
x=\frac{8\times 25}{5\times 2}
Multiply \frac{8}{5} times \frac{25}{2} by multiplying numerator times numerator and denominator times denominator.
x=\frac{200}{10}
Do the multiplications in the fraction \frac{8\times 25}{5\times 2}.
x=20
Divide 200 by 10 to get 20.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}