Solve for c
c=5\sqrt{137}\approx 58.523499554
c=-5\sqrt{137}\approx -58.523499554
Share
Copied to clipboard
400+55^{2}=c^{2}
Calculate 20 to the power of 2 and get 400.
400+3025=c^{2}
Calculate 55 to the power of 2 and get 3025.
3425=c^{2}
Add 400 and 3025 to get 3425.
c^{2}=3425
Swap sides so that all variable terms are on the left hand side.
c=5\sqrt{137} c=-5\sqrt{137}
Take the square root of both sides of the equation.
400+55^{2}=c^{2}
Calculate 20 to the power of 2 and get 400.
400+3025=c^{2}
Calculate 55 to the power of 2 and get 3025.
3425=c^{2}
Add 400 and 3025 to get 3425.
c^{2}=3425
Swap sides so that all variable terms are on the left hand side.
c^{2}-3425=0
Subtract 3425 from both sides.
c=\frac{0±\sqrt{0^{2}-4\left(-3425\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -3425 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±\sqrt{-4\left(-3425\right)}}{2}
Square 0.
c=\frac{0±\sqrt{13700}}{2}
Multiply -4 times -3425.
c=\frac{0±10\sqrt{137}}{2}
Take the square root of 13700.
c=5\sqrt{137}
Now solve the equation c=\frac{0±10\sqrt{137}}{2} when ± is plus.
c=-5\sqrt{137}
Now solve the equation c=\frac{0±10\sqrt{137}}{2} when ± is minus.
c=5\sqrt{137} c=-5\sqrt{137}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}