Solve for c
c=-\frac{20}{6-x}
x\neq 6
Solve for x
x=6+\frac{20}{c}
c\neq 0
Graph
Share
Copied to clipboard
20=cx-6c
Use the distributive property to multiply c by x-6.
cx-6c=20
Swap sides so that all variable terms are on the left hand side.
\left(x-6\right)c=20
Combine all terms containing c.
\frac{\left(x-6\right)c}{x-6}=\frac{20}{x-6}
Divide both sides by x-6.
c=\frac{20}{x-6}
Dividing by x-6 undoes the multiplication by x-6.
20=cx-6c
Use the distributive property to multiply c by x-6.
cx-6c=20
Swap sides so that all variable terms are on the left hand side.
cx=20+6c
Add 6c to both sides.
cx=6c+20
The equation is in standard form.
\frac{cx}{c}=\frac{6c+20}{c}
Divide both sides by c.
x=\frac{6c+20}{c}
Dividing by c undoes the multiplication by c.
x=6+\frac{20}{c}
Divide 20+6c by c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}