Solve for t
t = \frac{3 \sqrt{610} + 10}{49} \approx 1.716214984
t=\frac{10-3\sqrt{610}}{49}\approx -1.308051719
Share
Copied to clipboard
-49t^{2}+20t+130=20
Swap sides so that all variable terms are on the left hand side.
-49t^{2}+20t+130-20=0
Subtract 20 from both sides.
-49t^{2}+20t+110=0
Subtract 20 from 130 to get 110.
t=\frac{-20±\sqrt{20^{2}-4\left(-49\right)\times 110}}{2\left(-49\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -49 for a, 20 for b, and 110 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-20±\sqrt{400-4\left(-49\right)\times 110}}{2\left(-49\right)}
Square 20.
t=\frac{-20±\sqrt{400+196\times 110}}{2\left(-49\right)}
Multiply -4 times -49.
t=\frac{-20±\sqrt{400+21560}}{2\left(-49\right)}
Multiply 196 times 110.
t=\frac{-20±\sqrt{21960}}{2\left(-49\right)}
Add 400 to 21560.
t=\frac{-20±6\sqrt{610}}{2\left(-49\right)}
Take the square root of 21960.
t=\frac{-20±6\sqrt{610}}{-98}
Multiply 2 times -49.
t=\frac{6\sqrt{610}-20}{-98}
Now solve the equation t=\frac{-20±6\sqrt{610}}{-98} when ± is plus. Add -20 to 6\sqrt{610}.
t=\frac{10-3\sqrt{610}}{49}
Divide -20+6\sqrt{610} by -98.
t=\frac{-6\sqrt{610}-20}{-98}
Now solve the equation t=\frac{-20±6\sqrt{610}}{-98} when ± is minus. Subtract 6\sqrt{610} from -20.
t=\frac{3\sqrt{610}+10}{49}
Divide -20-6\sqrt{610} by -98.
t=\frac{10-3\sqrt{610}}{49} t=\frac{3\sqrt{610}+10}{49}
The equation is now solved.
-49t^{2}+20t+130=20
Swap sides so that all variable terms are on the left hand side.
-49t^{2}+20t=20-130
Subtract 130 from both sides.
-49t^{2}+20t=-110
Subtract 130 from 20 to get -110.
\frac{-49t^{2}+20t}{-49}=-\frac{110}{-49}
Divide both sides by -49.
t^{2}+\frac{20}{-49}t=-\frac{110}{-49}
Dividing by -49 undoes the multiplication by -49.
t^{2}-\frac{20}{49}t=-\frac{110}{-49}
Divide 20 by -49.
t^{2}-\frac{20}{49}t=\frac{110}{49}
Divide -110 by -49.
t^{2}-\frac{20}{49}t+\left(-\frac{10}{49}\right)^{2}=\frac{110}{49}+\left(-\frac{10}{49}\right)^{2}
Divide -\frac{20}{49}, the coefficient of the x term, by 2 to get -\frac{10}{49}. Then add the square of -\frac{10}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{20}{49}t+\frac{100}{2401}=\frac{110}{49}+\frac{100}{2401}
Square -\frac{10}{49} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{20}{49}t+\frac{100}{2401}=\frac{5490}{2401}
Add \frac{110}{49} to \frac{100}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{10}{49}\right)^{2}=\frac{5490}{2401}
Factor t^{2}-\frac{20}{49}t+\frac{100}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{10}{49}\right)^{2}}=\sqrt{\frac{5490}{2401}}
Take the square root of both sides of the equation.
t-\frac{10}{49}=\frac{3\sqrt{610}}{49} t-\frac{10}{49}=-\frac{3\sqrt{610}}{49}
Simplify.
t=\frac{3\sqrt{610}+10}{49} t=\frac{10-3\sqrt{610}}{49}
Add \frac{10}{49} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}