Skip to main content
Solve for t
Tick mark Image

Similar Problems from Web Search

Share

-4.9t^{2}+20t+130=20
Swap sides so that all variable terms are on the left hand side.
-4.9t^{2}+20t+130-20=0
Subtract 20 from both sides.
-4.9t^{2}+20t+110=0
Subtract 20 from 130 to get 110.
t=\frac{-20±\sqrt{20^{2}-4\left(-4.9\right)\times 110}}{2\left(-4.9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4.9 for a, 20 for b, and 110 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-20±\sqrt{400-4\left(-4.9\right)\times 110}}{2\left(-4.9\right)}
Square 20.
t=\frac{-20±\sqrt{400+19.6\times 110}}{2\left(-4.9\right)}
Multiply -4 times -4.9.
t=\frac{-20±\sqrt{400+2156}}{2\left(-4.9\right)}
Multiply 19.6 times 110.
t=\frac{-20±\sqrt{2556}}{2\left(-4.9\right)}
Add 400 to 2156.
t=\frac{-20±6\sqrt{71}}{2\left(-4.9\right)}
Take the square root of 2556.
t=\frac{-20±6\sqrt{71}}{-9.8}
Multiply 2 times -4.9.
t=\frac{6\sqrt{71}-20}{-9.8}
Now solve the equation t=\frac{-20±6\sqrt{71}}{-9.8} when ± is plus. Add -20 to 6\sqrt{71}.
t=\frac{100-30\sqrt{71}}{49}
Divide -20+6\sqrt{71} by -9.8 by multiplying -20+6\sqrt{71} by the reciprocal of -9.8.
t=\frac{-6\sqrt{71}-20}{-9.8}
Now solve the equation t=\frac{-20±6\sqrt{71}}{-9.8} when ± is minus. Subtract 6\sqrt{71} from -20.
t=\frac{30\sqrt{71}+100}{49}
Divide -20-6\sqrt{71} by -9.8 by multiplying -20-6\sqrt{71} by the reciprocal of -9.8.
t=\frac{100-30\sqrt{71}}{49} t=\frac{30\sqrt{71}+100}{49}
The equation is now solved.
-4.9t^{2}+20t+130=20
Swap sides so that all variable terms are on the left hand side.
-4.9t^{2}+20t=20-130
Subtract 130 from both sides.
-4.9t^{2}+20t=-110
Subtract 130 from 20 to get -110.
\frac{-4.9t^{2}+20t}{-4.9}=-\frac{110}{-4.9}
Divide both sides of the equation by -4.9, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{20}{-4.9}t=-\frac{110}{-4.9}
Dividing by -4.9 undoes the multiplication by -4.9.
t^{2}-\frac{200}{49}t=-\frac{110}{-4.9}
Divide 20 by -4.9 by multiplying 20 by the reciprocal of -4.9.
t^{2}-\frac{200}{49}t=\frac{1100}{49}
Divide -110 by -4.9 by multiplying -110 by the reciprocal of -4.9.
t^{2}-\frac{200}{49}t+\left(-\frac{100}{49}\right)^{2}=\frac{1100}{49}+\left(-\frac{100}{49}\right)^{2}
Divide -\frac{200}{49}, the coefficient of the x term, by 2 to get -\frac{100}{49}. Then add the square of -\frac{100}{49} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{200}{49}t+\frac{10000}{2401}=\frac{1100}{49}+\frac{10000}{2401}
Square -\frac{100}{49} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{200}{49}t+\frac{10000}{2401}=\frac{63900}{2401}
Add \frac{1100}{49} to \frac{10000}{2401} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{100}{49}\right)^{2}=\frac{63900}{2401}
Factor t^{2}-\frac{200}{49}t+\frac{10000}{2401}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{100}{49}\right)^{2}}=\sqrt{\frac{63900}{2401}}
Take the square root of both sides of the equation.
t-\frac{100}{49}=\frac{30\sqrt{71}}{49} t-\frac{100}{49}=-\frac{30\sqrt{71}}{49}
Simplify.
t=\frac{30\sqrt{71}+100}{49} t=\frac{100-30\sqrt{71}}{49}
Add \frac{100}{49} to both sides of the equation.