Solve for R
R = \frac{3 \sqrt{10}}{5} \approx 1.897366596
R = -\frac{3 \sqrt{10}}{5} \approx -1.897366596
Share
Copied to clipboard
20R^{2}=4\times 6\times 3
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by R^{2}.
20R^{2}=24\times 3
Multiply 4 and 6 to get 24.
20R^{2}=72
Multiply 24 and 3 to get 72.
R^{2}=\frac{72}{20}
Divide both sides by 20.
R^{2}=\frac{18}{5}
Reduce the fraction \frac{72}{20} to lowest terms by extracting and canceling out 4.
R=\frac{3\sqrt{10}}{5} R=-\frac{3\sqrt{10}}{5}
Take the square root of both sides of the equation.
20R^{2}=4\times 6\times 3
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by R^{2}.
20R^{2}=24\times 3
Multiply 4 and 6 to get 24.
20R^{2}=72
Multiply 24 and 3 to get 72.
20R^{2}-72=0
Subtract 72 from both sides.
R=\frac{0±\sqrt{0^{2}-4\times 20\left(-72\right)}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, 0 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
R=\frac{0±\sqrt{-4\times 20\left(-72\right)}}{2\times 20}
Square 0.
R=\frac{0±\sqrt{-80\left(-72\right)}}{2\times 20}
Multiply -4 times 20.
R=\frac{0±\sqrt{5760}}{2\times 20}
Multiply -80 times -72.
R=\frac{0±24\sqrt{10}}{2\times 20}
Take the square root of 5760.
R=\frac{0±24\sqrt{10}}{40}
Multiply 2 times 20.
R=\frac{3\sqrt{10}}{5}
Now solve the equation R=\frac{0±24\sqrt{10}}{40} when ± is plus.
R=-\frac{3\sqrt{10}}{5}
Now solve the equation R=\frac{0±24\sqrt{10}}{40} when ± is minus.
R=\frac{3\sqrt{10}}{5} R=-\frac{3\sqrt{10}}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}