Solve for R
R=\frac{9}{100}=0.09
R=-\frac{9}{100}=-0.09
Share
Copied to clipboard
20R^{2}=9\times 10^{9}\times 6\times 10^{-6}\times 3\times 10^{-6}
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by R^{2}.
20R^{2}=9\times 10^{3}\times 6\times 3\times 10^{-6}
To multiply powers of the same base, add their exponents. Add 9 and -6 to get 3.
20R^{2}=9\times 10^{-3}\times 6\times 3
To multiply powers of the same base, add their exponents. Add 3 and -6 to get -3.
20R^{2}=9\times \frac{1}{1000}\times 6\times 3
Calculate 10 to the power of -3 and get \frac{1}{1000}.
20R^{2}=\frac{9}{1000}\times 6\times 3
Multiply 9 and \frac{1}{1000} to get \frac{9}{1000}.
20R^{2}=\frac{27}{500}\times 3
Multiply \frac{9}{1000} and 6 to get \frac{27}{500}.
20R^{2}=\frac{81}{500}
Multiply \frac{27}{500} and 3 to get \frac{81}{500}.
20R^{2}-\frac{81}{500}=0
Subtract \frac{81}{500} from both sides.
10000R^{2}-81=0
Multiply both sides by 500.
\left(100R-9\right)\left(100R+9\right)=0
Consider 10000R^{2}-81. Rewrite 10000R^{2}-81 as \left(100R\right)^{2}-9^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
R=\frac{9}{100} R=-\frac{9}{100}
To find equation solutions, solve 100R-9=0 and 100R+9=0.
20R^{2}=9\times 10^{9}\times 6\times 10^{-6}\times 3\times 10^{-6}
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by R^{2}.
20R^{2}=9\times 10^{3}\times 6\times 3\times 10^{-6}
To multiply powers of the same base, add their exponents. Add 9 and -6 to get 3.
20R^{2}=9\times 10^{-3}\times 6\times 3
To multiply powers of the same base, add their exponents. Add 3 and -6 to get -3.
20R^{2}=9\times \frac{1}{1000}\times 6\times 3
Calculate 10 to the power of -3 and get \frac{1}{1000}.
20R^{2}=\frac{9}{1000}\times 6\times 3
Multiply 9 and \frac{1}{1000} to get \frac{9}{1000}.
20R^{2}=\frac{27}{500}\times 3
Multiply \frac{9}{1000} and 6 to get \frac{27}{500}.
20R^{2}=\frac{81}{500}
Multiply \frac{27}{500} and 3 to get \frac{81}{500}.
R^{2}=\frac{\frac{81}{500}}{20}
Divide both sides by 20.
R^{2}=\frac{81}{500\times 20}
Express \frac{\frac{81}{500}}{20} as a single fraction.
R^{2}=\frac{81}{10000}
Multiply 500 and 20 to get 10000.
R=\frac{9}{100} R=-\frac{9}{100}
Take the square root of both sides of the equation.
20R^{2}=9\times 10^{9}\times 6\times 10^{-6}\times 3\times 10^{-6}
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by R^{2}.
20R^{2}=9\times 10^{3}\times 6\times 3\times 10^{-6}
To multiply powers of the same base, add their exponents. Add 9 and -6 to get 3.
20R^{2}=9\times 10^{-3}\times 6\times 3
To multiply powers of the same base, add their exponents. Add 3 and -6 to get -3.
20R^{2}=9\times \frac{1}{1000}\times 6\times 3
Calculate 10 to the power of -3 and get \frac{1}{1000}.
20R^{2}=\frac{9}{1000}\times 6\times 3
Multiply 9 and \frac{1}{1000} to get \frac{9}{1000}.
20R^{2}=\frac{27}{500}\times 3
Multiply \frac{9}{1000} and 6 to get \frac{27}{500}.
20R^{2}=\frac{81}{500}
Multiply \frac{27}{500} and 3 to get \frac{81}{500}.
20R^{2}-\frac{81}{500}=0
Subtract \frac{81}{500} from both sides.
R=\frac{0±\sqrt{0^{2}-4\times 20\left(-\frac{81}{500}\right)}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, 0 for b, and -\frac{81}{500} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
R=\frac{0±\sqrt{-4\times 20\left(-\frac{81}{500}\right)}}{2\times 20}
Square 0.
R=\frac{0±\sqrt{-80\left(-\frac{81}{500}\right)}}{2\times 20}
Multiply -4 times 20.
R=\frac{0±\sqrt{\frac{324}{25}}}{2\times 20}
Multiply -80 times -\frac{81}{500}.
R=\frac{0±\frac{18}{5}}{2\times 20}
Take the square root of \frac{324}{25}.
R=\frac{0±\frac{18}{5}}{40}
Multiply 2 times 20.
R=\frac{9}{100}
Now solve the equation R=\frac{0±\frac{18}{5}}{40} when ± is plus.
R=-\frac{9}{100}
Now solve the equation R=\frac{0±\frac{18}{5}}{40} when ± is minus.
R=\frac{9}{100} R=-\frac{9}{100}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}