Skip to main content
Solve for R
Tick mark Image

Similar Problems from Web Search

Share

20R^{2}=9.1^{9}\times 6\times 10^{-6}\times 3\times 10^{-6}
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by R^{2}.
20R^{2}=9.1^{9}\times 6\times 10^{-12}\times 3
To multiply powers of the same base, add their exponents. Add -6 and -6 to get -12.
20R^{2}=427929800.129788411\times 6\times 10^{-12}\times 3
Calculate 9.1 to the power of 9 and get 427929800.129788411.
20R^{2}=2567578800.778730466\times 10^{-12}\times 3
Multiply 427929800.129788411 and 6 to get 2567578800.778730466.
20R^{2}=2567578800.778730466\times \frac{1}{1000000000000}\times 3
Calculate 10 to the power of -12 and get \frac{1}{1000000000000}.
20R^{2}=\frac{1283789400389365233}{500000000000000000000}\times 3
Multiply 2567578800.778730466 and \frac{1}{1000000000000} to get \frac{1283789400389365233}{500000000000000000000}.
20R^{2}=\frac{3851368201168095699}{500000000000000000000}
Multiply \frac{1283789400389365233}{500000000000000000000} and 3 to get \frac{3851368201168095699}{500000000000000000000}.
R^{2}=\frac{\frac{3851368201168095699}{500000000000000000000}}{20}
Divide both sides by 20.
R^{2}=\frac{3851368201168095699}{500000000000000000000\times 20}
Express \frac{\frac{3851368201168095699}{500000000000000000000}}{20} as a single fraction.
R^{2}=\frac{3851368201168095699}{10000000000000000000000}
Multiply 500000000000000000000 and 20 to get 10000000000000000000000.
R=\frac{205724883\sqrt{91}}{100000000000} R=-\frac{205724883\sqrt{91}}{100000000000}
Take the square root of both sides of the equation.
20R^{2}=9.1^{9}\times 6\times 10^{-6}\times 3\times 10^{-6}
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by R^{2}.
20R^{2}=9.1^{9}\times 6\times 10^{-12}\times 3
To multiply powers of the same base, add their exponents. Add -6 and -6 to get -12.
20R^{2}=427929800.129788411\times 6\times 10^{-12}\times 3
Calculate 9.1 to the power of 9 and get 427929800.129788411.
20R^{2}=2567578800.778730466\times 10^{-12}\times 3
Multiply 427929800.129788411 and 6 to get 2567578800.778730466.
20R^{2}=2567578800.778730466\times \frac{1}{1000000000000}\times 3
Calculate 10 to the power of -12 and get \frac{1}{1000000000000}.
20R^{2}=\frac{1283789400389365233}{500000000000000000000}\times 3
Multiply 2567578800.778730466 and \frac{1}{1000000000000} to get \frac{1283789400389365233}{500000000000000000000}.
20R^{2}=\frac{3851368201168095699}{500000000000000000000}
Multiply \frac{1283789400389365233}{500000000000000000000} and 3 to get \frac{3851368201168095699}{500000000000000000000}.
20R^{2}-\frac{3851368201168095699}{500000000000000000000}=0
Subtract \frac{3851368201168095699}{500000000000000000000} from both sides.
R=\frac{0±\sqrt{0^{2}-4\times 20\left(-\frac{3851368201168095699}{500000000000000000000}\right)}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, 0 for b, and -\frac{3851368201168095699}{500000000000000000000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
R=\frac{0±\sqrt{-4\times 20\left(-\frac{3851368201168095699}{500000000000000000000}\right)}}{2\times 20}
Square 0.
R=\frac{0±\sqrt{-80\left(-\frac{3851368201168095699}{500000000000000000000}\right)}}{2\times 20}
Multiply -4 times 20.
R=\frac{0±\sqrt{\frac{3851368201168095699}{6250000000000000000}}}{2\times 20}
Multiply -80 times -\frac{3851368201168095699}{500000000000000000000}.
R=\frac{0±\frac{205724883\sqrt{91}}{2500000000}}{2\times 20}
Take the square root of \frac{3851368201168095699}{6250000000000000000}.
R=\frac{0±\frac{205724883\sqrt{91}}{2500000000}}{40}
Multiply 2 times 20.
R=\frac{205724883\sqrt{91}}{100000000000}
Now solve the equation R=\frac{0±\frac{205724883\sqrt{91}}{2500000000}}{40} when ± is plus.
R=-\frac{205724883\sqrt{91}}{100000000000}
Now solve the equation R=\frac{0±\frac{205724883\sqrt{91}}{2500000000}}{40} when ± is minus.
R=\frac{205724883\sqrt{91}}{100000000000} R=-\frac{205724883\sqrt{91}}{100000000000}
The equation is now solved.