Solve for x
x=-\frac{399y}{284}+\frac{250000}{71}
Solve for y
y=\frac{1000000-284x}{399}
Graph
Share
Copied to clipboard
2.84x=10000-3.99y
Subtract 3.99y from both sides.
2.84x=-\frac{399y}{100}+10000
The equation is in standard form.
\frac{2.84x}{2.84}=\frac{-\frac{399y}{100}+10000}{2.84}
Divide both sides of the equation by 2.84, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{-\frac{399y}{100}+10000}{2.84}
Dividing by 2.84 undoes the multiplication by 2.84.
x=-\frac{399y}{284}+\frac{250000}{71}
Divide 10000-\frac{399y}{100} by 2.84 by multiplying 10000-\frac{399y}{100} by the reciprocal of 2.84.
3.99y=10000-2.84x
Subtract 2.84x from both sides.
3.99y=-\frac{71x}{25}+10000
The equation is in standard form.
\frac{3.99y}{3.99}=\frac{-\frac{71x}{25}+10000}{3.99}
Divide both sides of the equation by 3.99, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-\frac{71x}{25}+10000}{3.99}
Dividing by 3.99 undoes the multiplication by 3.99.
y=\frac{1000000-284x}{399}
Divide 10000-\frac{71x}{25} by 3.99 by multiplying 10000-\frac{71x}{25} by the reciprocal of 3.99.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}