Solve for a
a=-\frac{b}{2}-0.05
Solve for b
b=-2a-0.1
Share
Copied to clipboard
2.8=a\times 4+b\times 2+3
Multiply 2 and 2 to get 4.
a\times 4+b\times 2+3=2.8
Swap sides so that all variable terms are on the left hand side.
a\times 4+3=2.8-b\times 2
Subtract b\times 2 from both sides.
a\times 4=2.8-b\times 2-3
Subtract 3 from both sides.
a\times 4=2.8-2b-3
Multiply -1 and 2 to get -2.
a\times 4=-0.2-2b
Subtract 3 from 2.8 to get -0.2.
4a=-2b-0.2
The equation is in standard form.
\frac{4a}{4}=\frac{-2b-0.2}{4}
Divide both sides by 4.
a=\frac{-2b-0.2}{4}
Dividing by 4 undoes the multiplication by 4.
a=-\frac{b}{2}-\frac{1}{20}
Divide -0.2-2b by 4.
2.8=a\times 4+b\times 2+3
Multiply 2 and 2 to get 4.
a\times 4+b\times 2+3=2.8
Swap sides so that all variable terms are on the left hand side.
b\times 2+3=2.8-a\times 4
Subtract a\times 4 from both sides.
b\times 2=2.8-a\times 4-3
Subtract 3 from both sides.
b\times 2=2.8-4a-3
Multiply -1 and 4 to get -4.
b\times 2=-0.2-4a
Subtract 3 from 2.8 to get -0.2.
2b=-4a-0.2
The equation is in standard form.
\frac{2b}{2}=\frac{-4a-0.2}{2}
Divide both sides by 2.
b=\frac{-4a-0.2}{2}
Dividing by 2 undoes the multiplication by 2.
b=-2a-\frac{1}{10}
Divide -0.2-4a by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}