Solve for x
x=3.5
Graph
Share
Copied to clipboard
2.8=x\times \frac{2}{2.5}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
2.8=x\times \frac{20}{25}
Expand \frac{2}{2.5} by multiplying both numerator and the denominator by 10.
2.8=x\times \frac{4}{5}
Reduce the fraction \frac{20}{25} to lowest terms by extracting and canceling out 5.
x\times \frac{4}{5}=2.8
Swap sides so that all variable terms are on the left hand side.
x=2.8\times \frac{5}{4}
Multiply both sides by \frac{5}{4}, the reciprocal of \frac{4}{5}.
x=\frac{14}{5}\times \frac{5}{4}
Convert decimal number 2.8 to fraction \frac{28}{10}. Reduce the fraction \frac{28}{10} to lowest terms by extracting and canceling out 2.
x=\frac{14\times 5}{5\times 4}
Multiply \frac{14}{5} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
x=\frac{14}{4}
Cancel out 5 in both numerator and denominator.
x=\frac{7}{2}
Reduce the fraction \frac{14}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}