Solve for t
t=\frac{\sqrt{7831}-61}{30}\approx 0.916431252
t=\frac{-\sqrt{7831}-61}{30}\approx -4.983097919
Share
Copied to clipboard
2.74=2.44t+\frac{3}{5}t^{2}
Multiply \frac{1}{2} and 1.2 to get \frac{3}{5}.
2.44t+\frac{3}{5}t^{2}=2.74
Swap sides so that all variable terms are on the left hand side.
2.44t+\frac{3}{5}t^{2}-2.74=0
Subtract 2.74 from both sides.
\frac{3}{5}t^{2}+2.44t-2.74=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-2.44±\sqrt{2.44^{2}-4\times \frac{3}{5}\left(-2.74\right)}}{2\times \frac{3}{5}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{5} for a, 2.44 for b, and -2.74 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-2.44±\sqrt{5.9536-4\times \frac{3}{5}\left(-2.74\right)}}{2\times \frac{3}{5}}
Square 2.44 by squaring both the numerator and the denominator of the fraction.
t=\frac{-2.44±\sqrt{5.9536-\frac{12}{5}\left(-2.74\right)}}{2\times \frac{3}{5}}
Multiply -4 times \frac{3}{5}.
t=\frac{-2.44±\sqrt{5.9536+\frac{822}{125}}}{2\times \frac{3}{5}}
Multiply -\frac{12}{5} times -2.74 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
t=\frac{-2.44±\sqrt{\frac{7831}{625}}}{2\times \frac{3}{5}}
Add 5.9536 to \frac{822}{125} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
t=\frac{-2.44±\frac{\sqrt{7831}}{25}}{2\times \frac{3}{5}}
Take the square root of \frac{7831}{625}.
t=\frac{-2.44±\frac{\sqrt{7831}}{25}}{\frac{6}{5}}
Multiply 2 times \frac{3}{5}.
t=\frac{\sqrt{7831}-61}{\frac{6}{5}\times 25}
Now solve the equation t=\frac{-2.44±\frac{\sqrt{7831}}{25}}{\frac{6}{5}} when ± is plus. Add -2.44 to \frac{\sqrt{7831}}{25}.
t=\frac{\sqrt{7831}-61}{30}
Divide \frac{-61+\sqrt{7831}}{25} by \frac{6}{5} by multiplying \frac{-61+\sqrt{7831}}{25} by the reciprocal of \frac{6}{5}.
t=\frac{-\sqrt{7831}-61}{\frac{6}{5}\times 25}
Now solve the equation t=\frac{-2.44±\frac{\sqrt{7831}}{25}}{\frac{6}{5}} when ± is minus. Subtract \frac{\sqrt{7831}}{25} from -2.44.
t=\frac{-\sqrt{7831}-61}{30}
Divide \frac{-61-\sqrt{7831}}{25} by \frac{6}{5} by multiplying \frac{-61-\sqrt{7831}}{25} by the reciprocal of \frac{6}{5}.
t=\frac{\sqrt{7831}-61}{30} t=\frac{-\sqrt{7831}-61}{30}
The equation is now solved.
2.74=2.44t+\frac{3}{5}t^{2}
Multiply \frac{1}{2} and 1.2 to get \frac{3}{5}.
2.44t+\frac{3}{5}t^{2}=2.74
Swap sides so that all variable terms are on the left hand side.
\frac{3}{5}t^{2}+2.44t=2.74
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{3}{5}t^{2}+2.44t}{\frac{3}{5}}=\frac{2.74}{\frac{3}{5}}
Divide both sides of the equation by \frac{3}{5}, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\frac{2.44}{\frac{3}{5}}t=\frac{2.74}{\frac{3}{5}}
Dividing by \frac{3}{5} undoes the multiplication by \frac{3}{5}.
t^{2}+\frac{61}{15}t=\frac{2.74}{\frac{3}{5}}
Divide 2.44 by \frac{3}{5} by multiplying 2.44 by the reciprocal of \frac{3}{5}.
t^{2}+\frac{61}{15}t=\frac{137}{30}
Divide 2.74 by \frac{3}{5} by multiplying 2.74 by the reciprocal of \frac{3}{5}.
t^{2}+\frac{61}{15}t+\left(\frac{61}{30}\right)^{2}=\frac{137}{30}+\left(\frac{61}{30}\right)^{2}
Divide \frac{61}{15}, the coefficient of the x term, by 2 to get \frac{61}{30}. Then add the square of \frac{61}{30} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}+\frac{61}{15}t+\frac{3721}{900}=\frac{137}{30}+\frac{3721}{900}
Square \frac{61}{30} by squaring both the numerator and the denominator of the fraction.
t^{2}+\frac{61}{15}t+\frac{3721}{900}=\frac{7831}{900}
Add \frac{137}{30} to \frac{3721}{900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t+\frac{61}{30}\right)^{2}=\frac{7831}{900}
Factor t^{2}+\frac{61}{15}t+\frac{3721}{900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{61}{30}\right)^{2}}=\sqrt{\frac{7831}{900}}
Take the square root of both sides of the equation.
t+\frac{61}{30}=\frac{\sqrt{7831}}{30} t+\frac{61}{30}=-\frac{\sqrt{7831}}{30}
Simplify.
t=\frac{\sqrt{7831}-61}{30} t=\frac{-\sqrt{7831}-61}{30}
Subtract \frac{61}{30} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}