Evaluate
0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
\frac{2.7}{\frac{3\times 5+3}{5}\times 1.5}
Express \frac{\frac{2.7}{\frac{3\times 5+3}{5}}}{1.5} as a single fraction.
\frac{2.7}{\frac{15+3}{5}\times 1.5}
Multiply 3 and 5 to get 15.
\frac{2.7}{\frac{18}{5}\times 1.5}
Add 15 and 3 to get 18.
\frac{2.7}{\frac{18}{5}\times \frac{3}{2}}
Convert decimal number 1.5 to fraction \frac{15}{10}. Reduce the fraction \frac{15}{10} to lowest terms by extracting and canceling out 5.
\frac{2.7}{\frac{18\times 3}{5\times 2}}
Multiply \frac{18}{5} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{2.7}{\frac{54}{10}}
Do the multiplications in the fraction \frac{18\times 3}{5\times 2}.
\frac{2.7}{\frac{27}{5}}
Reduce the fraction \frac{54}{10} to lowest terms by extracting and canceling out 2.
2.7\times \frac{5}{27}
Divide 2.7 by \frac{27}{5} by multiplying 2.7 by the reciprocal of \frac{27}{5}.
\frac{27}{10}\times \frac{5}{27}
Convert decimal number 2.7 to fraction \frac{27}{10}.
\frac{27\times 5}{10\times 27}
Multiply \frac{27}{10} times \frac{5}{27} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{10}
Cancel out 27 in both numerator and denominator.
\frac{1}{2}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}