Solve for k
k = \frac{27 \sqrt{1310}}{100} \approx 9.772358978
Share
Copied to clipboard
2.7=\frac{k\sqrt{13.1}}{\left(\sqrt{13.1}\right)^{2}}
Rationalize the denominator of \frac{k}{\sqrt{13.1}} by multiplying numerator and denominator by \sqrt{13.1}.
2.7=\frac{k\sqrt{13.1}}{13.1}
The square of \sqrt{13.1} is 13.1.
\frac{k\sqrt{13.1}}{13.1}=2.7
Swap sides so that all variable terms are on the left hand side.
k\sqrt{13.1}=2.7\times 13.1
Multiply both sides by 13.1.
k\sqrt{13.1}=35.37
Multiply 2.7 and 13.1 to get 35.37.
\sqrt{13.1}k=35.37
The equation is in standard form.
\frac{\sqrt{13.1}k}{\sqrt{13.1}}=\frac{35.37}{\sqrt{13.1}}
Divide both sides by \sqrt{13.1}.
k=\frac{35.37}{\sqrt{13.1}}
Dividing by \sqrt{13.1} undoes the multiplication by \sqrt{13.1}.
k=\frac{27\sqrt{1310}}{100}
Divide 35.37 by \sqrt{13.1}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}