Solve for x
x=10\sqrt{85}-50\approx 42.195444573
x=-10\sqrt{85}-50\approx -142.195444573
Graph
Share
Copied to clipboard
2.5x^{2}+250x-15000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-250±\sqrt{250^{2}-4\times 2.5\left(-15000\right)}}{2\times 2.5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2.5 for a, 250 for b, and -15000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-250±\sqrt{62500-4\times 2.5\left(-15000\right)}}{2\times 2.5}
Square 250.
x=\frac{-250±\sqrt{62500-10\left(-15000\right)}}{2\times 2.5}
Multiply -4 times 2.5.
x=\frac{-250±\sqrt{62500+150000}}{2\times 2.5}
Multiply -10 times -15000.
x=\frac{-250±\sqrt{212500}}{2\times 2.5}
Add 62500 to 150000.
x=\frac{-250±50\sqrt{85}}{2\times 2.5}
Take the square root of 212500.
x=\frac{-250±50\sqrt{85}}{5}
Multiply 2 times 2.5.
x=\frac{50\sqrt{85}-250}{5}
Now solve the equation x=\frac{-250±50\sqrt{85}}{5} when ± is plus. Add -250 to 50\sqrt{85}.
x=10\sqrt{85}-50
Divide -250+50\sqrt{85} by 5.
x=\frac{-50\sqrt{85}-250}{5}
Now solve the equation x=\frac{-250±50\sqrt{85}}{5} when ± is minus. Subtract 50\sqrt{85} from -250.
x=-10\sqrt{85}-50
Divide -250-50\sqrt{85} by 5.
x=10\sqrt{85}-50 x=-10\sqrt{85}-50
The equation is now solved.
2.5x^{2}+250x-15000=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2.5x^{2}+250x-15000-\left(-15000\right)=-\left(-15000\right)
Add 15000 to both sides of the equation.
2.5x^{2}+250x=-\left(-15000\right)
Subtracting -15000 from itself leaves 0.
2.5x^{2}+250x=15000
Subtract -15000 from 0.
\frac{2.5x^{2}+250x}{2.5}=\frac{15000}{2.5}
Divide both sides of the equation by 2.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{250}{2.5}x=\frac{15000}{2.5}
Dividing by 2.5 undoes the multiplication by 2.5.
x^{2}+100x=\frac{15000}{2.5}
Divide 250 by 2.5 by multiplying 250 by the reciprocal of 2.5.
x^{2}+100x=6000
Divide 15000 by 2.5 by multiplying 15000 by the reciprocal of 2.5.
x^{2}+100x+50^{2}=6000+50^{2}
Divide 100, the coefficient of the x term, by 2 to get 50. Then add the square of 50 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+100x+2500=6000+2500
Square 50.
x^{2}+100x+2500=8500
Add 6000 to 2500.
\left(x+50\right)^{2}=8500
Factor x^{2}+100x+2500. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+50\right)^{2}}=\sqrt{8500}
Take the square root of both sides of the equation.
x+50=10\sqrt{85} x+50=-10\sqrt{85}
Simplify.
x=10\sqrt{85}-50 x=-10\sqrt{85}-50
Subtract 50 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}