Solve for x
x=0.9
Graph
Share
Copied to clipboard
2.5=x\times \frac{\frac{3\times 3+1}{3}}{1.2}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
2.5=x\times \frac{\frac{9+1}{3}}{1.2}
Multiply 3 and 3 to get 9.
2.5=x\times \frac{\frac{10}{3}}{1.2}
Add 9 and 1 to get 10.
2.5=x\times \frac{10}{3\times 1.2}
Express \frac{\frac{10}{3}}{1.2} as a single fraction.
2.5=x\times \frac{10}{3.6}
Multiply 3 and 1.2 to get 3.6.
2.5=x\times \frac{100}{36}
Expand \frac{10}{3.6} by multiplying both numerator and the denominator by 10.
2.5=x\times \frac{25}{9}
Reduce the fraction \frac{100}{36} to lowest terms by extracting and canceling out 4.
x\times \frac{25}{9}=2.5
Swap sides so that all variable terms are on the left hand side.
x=2.5\times \frac{9}{25}
Multiply both sides by \frac{9}{25}, the reciprocal of \frac{25}{9}.
x=\frac{5}{2}\times \frac{9}{25}
Convert decimal number 2.5 to fraction \frac{25}{10}. Reduce the fraction \frac{25}{10} to lowest terms by extracting and canceling out 5.
x=\frac{5\times 9}{2\times 25}
Multiply \frac{5}{2} times \frac{9}{25} by multiplying numerator times numerator and denominator times denominator.
x=\frac{45}{50}
Do the multiplications in the fraction \frac{5\times 9}{2\times 25}.
x=\frac{9}{10}
Reduce the fraction \frac{45}{50} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}