Evaluate
-\frac{125}{6}\approx -20.833333333
Factor
-\frac{125}{6} = -20\frac{5}{6} = -20.833333333333332
Share
Copied to clipboard
2.5-8\times \frac{5}{6}\times 3.5
Divide -8 by \frac{6}{5} by multiplying -8 by the reciprocal of \frac{6}{5}.
2.5+\frac{-8\times 5}{6}\times 3.5
Express -8\times \frac{5}{6} as a single fraction.
2.5+\frac{-40}{6}\times 3.5
Multiply -8 and 5 to get -40.
2.5-\frac{20}{3}\times 3.5
Reduce the fraction \frac{-40}{6} to lowest terms by extracting and canceling out 2.
2.5-\frac{20}{3}\times \frac{7}{2}
Convert decimal number 3.5 to fraction \frac{35}{10}. Reduce the fraction \frac{35}{10} to lowest terms by extracting and canceling out 5.
2.5+\frac{-20\times 7}{3\times 2}
Multiply -\frac{20}{3} times \frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
2.5+\frac{-140}{6}
Do the multiplications in the fraction \frac{-20\times 7}{3\times 2}.
2.5-\frac{70}{3}
Reduce the fraction \frac{-140}{6} to lowest terms by extracting and canceling out 2.
\frac{5}{2}-\frac{70}{3}
Convert decimal number 2.5 to fraction \frac{25}{10}. Reduce the fraction \frac{25}{10} to lowest terms by extracting and canceling out 5.
\frac{15}{6}-\frac{140}{6}
Least common multiple of 2 and 3 is 6. Convert \frac{5}{2} and \frac{70}{3} to fractions with denominator 6.
\frac{15-140}{6}
Since \frac{15}{6} and \frac{140}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{125}{6}
Subtract 140 from 15 to get -125.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}