Solve for x
x = \frac{5}{12} = 0.4166666666666667
Solve for y
y = -\frac{5}{12} = -0.4166666666666667
Graph
Share
Copied to clipboard
2.4x=1+2.4y
Add 2.4y to both sides.
2.4x=\frac{12y}{5}+1
The equation is in standard form.
\frac{2.4x}{2.4}=\frac{\frac{12y}{5}+1}{2.4}
Divide both sides of the equation by 2.4, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{\frac{12y}{5}+1}{2.4}
Dividing by 2.4 undoes the multiplication by 2.4.
x=y+\frac{5}{12}
Divide 1+\frac{12y}{5} by 2.4 by multiplying 1+\frac{12y}{5} by the reciprocal of 2.4.
-2.4y=1-2.4x
Subtract 2.4x from both sides.
-2.4y=-\frac{12x}{5}+1
The equation is in standard form.
\frac{-2.4y}{-2.4}=\frac{-\frac{12x}{5}+1}{-2.4}
Divide both sides of the equation by -2.4, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-\frac{12x}{5}+1}{-2.4}
Dividing by -2.4 undoes the multiplication by -2.4.
y=x-\frac{5}{12}
Divide 1-\frac{12x}{5} by -2.4 by multiplying 1-\frac{12x}{5} by the reciprocal of -2.4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}