Solve for x
x=1.2
Graph
Share
Copied to clipboard
2.375\left(x+26\right)=61+3x
Variable x cannot be equal to -26 since division by zero is not defined. Multiply both sides of the equation by x+26.
2.375x+61.75=61+3x
Use the distributive property to multiply 2.375 by x+26.
2.375x+61.75-3x=61
Subtract 3x from both sides.
-0.625x+61.75=61
Combine 2.375x and -3x to get -0.625x.
-0.625x=61-61.75
Subtract 61.75 from both sides.
-0.625x=-0.75
Subtract 61.75 from 61 to get -0.75.
x=\frac{-0.75}{-0.625}
Divide both sides by -0.625.
x=\frac{-750}{-625}
Expand \frac{-0.75}{-0.625} by multiplying both numerator and the denominator by 1000.
x=\frac{6}{5}
Reduce the fraction \frac{-750}{-625} to lowest terms by extracting and canceling out -125.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}