Solve for b
b=\frac{5-5c}{11}
Solve for c
c=-\frac{11b}{5}+1
Share
Copied to clipboard
2.2b=1-c
Subtract c from both sides.
\frac{2.2b}{2.2}=\frac{1-c}{2.2}
Divide both sides of the equation by 2.2, which is the same as multiplying both sides by the reciprocal of the fraction.
b=\frac{1-c}{2.2}
Dividing by 2.2 undoes the multiplication by 2.2.
b=\frac{5-5c}{11}
Divide 1-c by 2.2 by multiplying 1-c by the reciprocal of 2.2.
c=1-2.2b
Subtract 2.2b from both sides.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}