Evaluate
-\frac{533}{120}\approx -4.441666667
Factor
-\frac{533}{120} = -4\frac{53}{120} = -4.441666666666666
Share
Copied to clipboard
\frac{21}{10}-\frac{7}{8}+\frac{11}{6}-7.5
Convert decimal number 2.1 to fraction \frac{21}{10}.
\frac{84}{40}-\frac{35}{40}+\frac{11}{6}-7.5
Least common multiple of 10 and 8 is 40. Convert \frac{21}{10} and \frac{7}{8} to fractions with denominator 40.
\frac{84-35}{40}+\frac{11}{6}-7.5
Since \frac{84}{40} and \frac{35}{40} have the same denominator, subtract them by subtracting their numerators.
\frac{49}{40}+\frac{11}{6}-7.5
Subtract 35 from 84 to get 49.
\frac{147}{120}+\frac{220}{120}-7.5
Least common multiple of 40 and 6 is 120. Convert \frac{49}{40} and \frac{11}{6} to fractions with denominator 120.
\frac{147+220}{120}-7.5
Since \frac{147}{120} and \frac{220}{120} have the same denominator, add them by adding their numerators.
\frac{367}{120}-7.5
Add 147 and 220 to get 367.
\frac{367}{120}-\frac{15}{2}
Convert decimal number 7.5 to fraction \frac{75}{10}. Reduce the fraction \frac{75}{10} to lowest terms by extracting and canceling out 5.
\frac{367}{120}-\frac{900}{120}
Least common multiple of 120 and 2 is 120. Convert \frac{367}{120} and \frac{15}{2} to fractions with denominator 120.
\frac{367-900}{120}
Since \frac{367}{120} and \frac{900}{120} have the same denominator, subtract them by subtracting their numerators.
-\frac{533}{120}
Subtract 900 from 367 to get -533.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}