Solve for T_2
T_{2}=\frac{12000b}{101}
Solve for b
b=\frac{101T_{2}}{12000}
Share
Copied to clipboard
1.01T_{2}=120b
Combine 2.01T_{2} and -T_{2} to get 1.01T_{2}.
\frac{1.01T_{2}}{1.01}=\frac{120b}{1.01}
Divide both sides of the equation by 1.01, which is the same as multiplying both sides by the reciprocal of the fraction.
T_{2}=\frac{120b}{1.01}
Dividing by 1.01 undoes the multiplication by 1.01.
T_{2}=\frac{12000b}{101}
Divide 120b by 1.01 by multiplying 120b by the reciprocal of 1.01.
1.01T_{2}=120b
Combine 2.01T_{2} and -T_{2} to get 1.01T_{2}.
120b=1.01T_{2}
Swap sides so that all variable terms are on the left hand side.
120b=\frac{101T_{2}}{100}
The equation is in standard form.
\frac{120b}{120}=\frac{101T_{2}}{100\times 120}
Divide both sides by 120.
b=\frac{101T_{2}}{100\times 120}
Dividing by 120 undoes the multiplication by 120.
b=\frac{101T_{2}}{12000}
Divide \frac{101T_{2}}{100} by 120.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}