Solve for x
x=-\frac{1}{5}=-0.2
Graph
Share
Copied to clipboard
2-x\left(3x-2x+4\right)=1-\left(x+1\right)\left(x-2\right)
Use the distributive property to multiply -2 by x-2.
2-x\left(x+4\right)=1-\left(x+1\right)\left(x-2\right)
Combine 3x and -2x to get x.
2-\left(x^{2}+4x\right)=1-\left(x+1\right)\left(x-2\right)
Use the distributive property to multiply x by x+4.
2-x^{2}-4x=1-\left(x+1\right)\left(x-2\right)
To find the opposite of x^{2}+4x, find the opposite of each term.
2-x^{2}-4x=1-\left(x^{2}-x-2\right)
Use the distributive property to multiply x+1 by x-2 and combine like terms.
2-x^{2}-4x=1-x^{2}+x+2
To find the opposite of x^{2}-x-2, find the opposite of each term.
2-x^{2}-4x=3-x^{2}+x
Add 1 and 2 to get 3.
2-x^{2}-4x+x^{2}=3+x
Add x^{2} to both sides.
2-4x=3+x
Combine -x^{2} and x^{2} to get 0.
2-4x-x=3
Subtract x from both sides.
2-5x=3
Combine -4x and -x to get -5x.
-5x=3-2
Subtract 2 from both sides.
-5x=1
Subtract 2 from 3 to get 1.
x=\frac{1}{-5}
Divide both sides by -5.
x=-\frac{1}{5}
Fraction \frac{1}{-5} can be rewritten as -\frac{1}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}