Evaluate
\frac{2609}{192}\approx 13.588541667
Factor
\frac{2609}{2 ^ {6} \cdot 3} = 13\frac{113}{192} = 13.588541666666666
Share
Copied to clipboard
2-\frac{8-3}{\frac{6-8}{5-\frac{14}{\frac{16}{\frac{20}{48}}}}}
Multiply 4 and 2 to get 8.
2-\frac{5}{\frac{6-8}{5-\frac{14}{\frac{16}{\frac{20}{48}}}}}
Subtract 3 from 8 to get 5.
2-\frac{5}{\frac{-2}{5-\frac{14}{\frac{16}{\frac{20}{48}}}}}
Subtract 8 from 6 to get -2.
2-\frac{5}{\frac{-2}{5-\frac{14\times \frac{20}{48}}{16}}}
Divide 14 by \frac{16}{\frac{20}{48}} by multiplying 14 by the reciprocal of \frac{16}{\frac{20}{48}}.
2-\frac{5}{\frac{-2}{5-\frac{14\times \frac{5}{12}}{16}}}
Reduce the fraction \frac{20}{48} to lowest terms by extracting and canceling out 4.
2-\frac{5}{\frac{-2}{5-\frac{\frac{14\times 5}{12}}{16}}}
Express 14\times \frac{5}{12} as a single fraction.
2-\frac{5}{\frac{-2}{5-\frac{\frac{70}{12}}{16}}}
Multiply 14 and 5 to get 70.
2-\frac{5}{\frac{-2}{5-\frac{\frac{35}{6}}{16}}}
Reduce the fraction \frac{70}{12} to lowest terms by extracting and canceling out 2.
2-\frac{5}{\frac{-2}{5-\frac{35}{6\times 16}}}
Express \frac{\frac{35}{6}}{16} as a single fraction.
2-\frac{5}{\frac{-2}{5-\frac{35}{96}}}
Multiply 6 and 16 to get 96.
2-\frac{5}{\frac{-2}{\frac{480}{96}-\frac{35}{96}}}
Convert 5 to fraction \frac{480}{96}.
2-\frac{5}{\frac{-2}{\frac{480-35}{96}}}
Since \frac{480}{96} and \frac{35}{96} have the same denominator, subtract them by subtracting their numerators.
2-\frac{5}{\frac{-2}{\frac{445}{96}}}
Subtract 35 from 480 to get 445.
2-\frac{5}{-2\times \frac{96}{445}}
Divide -2 by \frac{445}{96} by multiplying -2 by the reciprocal of \frac{445}{96}.
2-\frac{5}{\frac{-2\times 96}{445}}
Express -2\times \frac{96}{445} as a single fraction.
2-\frac{5}{\frac{-192}{445}}
Multiply -2 and 96 to get -192.
2-\frac{5}{-\frac{192}{445}}
Fraction \frac{-192}{445} can be rewritten as -\frac{192}{445} by extracting the negative sign.
2-5\left(-\frac{445}{192}\right)
Divide 5 by -\frac{192}{445} by multiplying 5 by the reciprocal of -\frac{192}{445}.
2-\frac{5\left(-445\right)}{192}
Express 5\left(-\frac{445}{192}\right) as a single fraction.
2-\frac{-2225}{192}
Multiply 5 and -445 to get -2225.
2-\left(-\frac{2225}{192}\right)
Fraction \frac{-2225}{192} can be rewritten as -\frac{2225}{192} by extracting the negative sign.
2+\frac{2225}{192}
The opposite of -\frac{2225}{192} is \frac{2225}{192}.
\frac{384}{192}+\frac{2225}{192}
Convert 2 to fraction \frac{384}{192}.
\frac{384+2225}{192}
Since \frac{384}{192} and \frac{2225}{192} have the same denominator, add them by adding their numerators.
\frac{2609}{192}
Add 384 and 2225 to get 2609.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}