Evaluate
-\frac{119}{120}\approx -0.991666667
Factor
-\frac{119}{120} = -0.9916666666666667
Share
Copied to clipboard
2-\frac{3\times 3}{4\times 2}+\frac{\frac{1}{3}}{5}\times 2-2\times \frac{3}{2}+3\times \frac{1}{3}
Multiply \frac{3}{4} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
2-\frac{9}{8}+\frac{\frac{1}{3}}{5}\times 2-2\times \frac{3}{2}+3\times \frac{1}{3}
Do the multiplications in the fraction \frac{3\times 3}{4\times 2}.
\frac{16}{8}-\frac{9}{8}+\frac{\frac{1}{3}}{5}\times 2-2\times \frac{3}{2}+3\times \frac{1}{3}
Convert 2 to fraction \frac{16}{8}.
\frac{16-9}{8}+\frac{\frac{1}{3}}{5}\times 2-2\times \frac{3}{2}+3\times \frac{1}{3}
Since \frac{16}{8} and \frac{9}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{8}+\frac{\frac{1}{3}}{5}\times 2-2\times \frac{3}{2}+3\times \frac{1}{3}
Subtract 9 from 16 to get 7.
\frac{7}{8}+\frac{1}{3\times 5}\times 2-2\times \frac{3}{2}+3\times \frac{1}{3}
Express \frac{\frac{1}{3}}{5} as a single fraction.
\frac{7}{8}+\frac{1}{15}\times 2-2\times \frac{3}{2}+3\times \frac{1}{3}
Multiply 3 and 5 to get 15.
\frac{7}{8}+\frac{2}{15}-2\times \frac{3}{2}+3\times \frac{1}{3}
Multiply \frac{1}{15} and 2 to get \frac{2}{15}.
\frac{105}{120}+\frac{16}{120}-2\times \frac{3}{2}+3\times \frac{1}{3}
Least common multiple of 8 and 15 is 120. Convert \frac{7}{8} and \frac{2}{15} to fractions with denominator 120.
\frac{105+16}{120}-2\times \frac{3}{2}+3\times \frac{1}{3}
Since \frac{105}{120} and \frac{16}{120} have the same denominator, add them by adding their numerators.
\frac{121}{120}-2\times \frac{3}{2}+3\times \frac{1}{3}
Add 105 and 16 to get 121.
\frac{121}{120}-3+3\times \frac{1}{3}
Cancel out 2 and 2.
\frac{121}{120}-\frac{360}{120}+3\times \frac{1}{3}
Convert 3 to fraction \frac{360}{120}.
\frac{121-360}{120}+3\times \frac{1}{3}
Since \frac{121}{120} and \frac{360}{120} have the same denominator, subtract them by subtracting their numerators.
-\frac{239}{120}+3\times \frac{1}{3}
Subtract 360 from 121 to get -239.
-\frac{239}{120}+1
Cancel out 3 and 3.
-\frac{239}{120}+\frac{120}{120}
Convert 1 to fraction \frac{120}{120}.
\frac{-239+120}{120}
Since -\frac{239}{120} and \frac{120}{120} have the same denominator, add them by adding their numerators.
-\frac{119}{120}
Add -239 and 120 to get -119.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}