Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

2-\frac{14x-12}{\left(x-3\right)\left(x+3\right)}
Factor x^{2}-9.
\frac{2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{14x-12}{\left(x-3\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}.
\frac{2\left(x-3\right)\left(x+3\right)-\left(14x-12\right)}{\left(x-3\right)\left(x+3\right)}
Since \frac{2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{14x-12}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+6x-6x-18-14x+12}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in 2\left(x-3\right)\left(x+3\right)-\left(14x-12\right).
\frac{2x^{2}-14x-6}{\left(x-3\right)\left(x+3\right)}
Combine like terms in 2x^{2}+6x-6x-18-14x+12.
\frac{2x^{2}-14x-6}{x^{2}-9}
Expand \left(x-3\right)\left(x+3\right).
2-\frac{14x-12}{\left(x-3\right)\left(x+3\right)}
Factor x^{2}-9.
\frac{2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{14x-12}{\left(x-3\right)\left(x+3\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}.
\frac{2\left(x-3\right)\left(x+3\right)-\left(14x-12\right)}{\left(x-3\right)\left(x+3\right)}
Since \frac{2\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{14x-12}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2x^{2}+6x-6x-18-14x+12}{\left(x-3\right)\left(x+3\right)}
Do the multiplications in 2\left(x-3\right)\left(x+3\right)-\left(14x-12\right).
\frac{2x^{2}-14x-6}{\left(x-3\right)\left(x+3\right)}
Combine like terms in 2x^{2}+6x-6x-18-14x+12.
\frac{2x^{2}-14x-6}{x^{2}-9}
Expand \left(x-3\right)\left(x+3\right).