Solve for x
x = \frac{13}{3} = 4\frac{1}{3} \approx 4.333333333
Graph
Share
Copied to clipboard
2-\frac{1}{3}\times 2x-\frac{1}{3}\left(-4\right)=-\frac{1}{6}\left(x-7\right)
Use the distributive property to multiply -\frac{1}{3} by 2x-4.
2+\frac{-2}{3}x-\frac{1}{3}\left(-4\right)=-\frac{1}{6}\left(x-7\right)
Express -\frac{1}{3}\times 2 as a single fraction.
2-\frac{2}{3}x-\frac{1}{3}\left(-4\right)=-\frac{1}{6}\left(x-7\right)
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
2-\frac{2}{3}x+\frac{-\left(-4\right)}{3}=-\frac{1}{6}\left(x-7\right)
Express -\frac{1}{3}\left(-4\right) as a single fraction.
2-\frac{2}{3}x+\frac{4}{3}=-\frac{1}{6}\left(x-7\right)
Multiply -1 and -4 to get 4.
\frac{6}{3}-\frac{2}{3}x+\frac{4}{3}=-\frac{1}{6}\left(x-7\right)
Convert 2 to fraction \frac{6}{3}.
\frac{6+4}{3}-\frac{2}{3}x=-\frac{1}{6}\left(x-7\right)
Since \frac{6}{3} and \frac{4}{3} have the same denominator, add them by adding their numerators.
\frac{10}{3}-\frac{2}{3}x=-\frac{1}{6}\left(x-7\right)
Add 6 and 4 to get 10.
\frac{10}{3}-\frac{2}{3}x=-\frac{1}{6}x-\frac{1}{6}\left(-7\right)
Use the distributive property to multiply -\frac{1}{6} by x-7.
\frac{10}{3}-\frac{2}{3}x=-\frac{1}{6}x+\frac{-\left(-7\right)}{6}
Express -\frac{1}{6}\left(-7\right) as a single fraction.
\frac{10}{3}-\frac{2}{3}x=-\frac{1}{6}x+\frac{7}{6}
Multiply -1 and -7 to get 7.
\frac{10}{3}-\frac{2}{3}x+\frac{1}{6}x=\frac{7}{6}
Add \frac{1}{6}x to both sides.
\frac{10}{3}-\frac{1}{2}x=\frac{7}{6}
Combine -\frac{2}{3}x and \frac{1}{6}x to get -\frac{1}{2}x.
-\frac{1}{2}x=\frac{7}{6}-\frac{10}{3}
Subtract \frac{10}{3} from both sides.
-\frac{1}{2}x=\frac{7}{6}-\frac{20}{6}
Least common multiple of 6 and 3 is 6. Convert \frac{7}{6} and \frac{10}{3} to fractions with denominator 6.
-\frac{1}{2}x=\frac{7-20}{6}
Since \frac{7}{6} and \frac{20}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}x=-\frac{13}{6}
Subtract 20 from 7 to get -13.
x=-\frac{13}{6}\left(-2\right)
Multiply both sides by -2, the reciprocal of -\frac{1}{2}.
x=\frac{-13\left(-2\right)}{6}
Express -\frac{13}{6}\left(-2\right) as a single fraction.
x=\frac{26}{6}
Multiply -13 and -2 to get 26.
x=\frac{13}{3}
Reduce the fraction \frac{26}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}