Solve for x
x=\frac{y}{y-1}
y\neq 1
Solve for y
y=\frac{x}{x-1}
x\neq 1
Graph
Share
Copied to clipboard
2xy+16x+16y=2\times 9x+2\times 9y
Use the distributive property to multiply 2 by xy+8x+8y.
2xy+16x+16y=18x+18y
Do the multiplications.
2xy+16x+16y-18x=18y
Subtract 18x from both sides.
2xy-2x+16y=18y
Combine 16x and -18x to get -2x.
2xy-2x=18y-16y
Subtract 16y from both sides.
2xy-2x=2y
Combine 18y and -16y to get 2y.
\left(2y-2\right)x=2y
Combine all terms containing x.
\frac{\left(2y-2\right)x}{2y-2}=\frac{2y}{2y-2}
Divide both sides by 2y-2.
x=\frac{2y}{2y-2}
Dividing by 2y-2 undoes the multiplication by 2y-2.
x=\frac{y}{y-1}
Divide 2y by 2y-2.
2xy+16x+16y=2\times 9x+2\times 9y
Use the distributive property to multiply 2 by xy+8x+8y.
2xy+16x+16y=18x+18y
Do the multiplications.
2xy+16x+16y-18y=18x
Subtract 18y from both sides.
2xy+16x-2y=18x
Combine 16y and -18y to get -2y.
2xy-2y=18x-16x
Subtract 16x from both sides.
2xy-2y=2x
Combine 18x and -16x to get 2x.
\left(2x-2\right)y=2x
Combine all terms containing y.
\frac{\left(2x-2\right)y}{2x-2}=\frac{2x}{2x-2}
Divide both sides by 2x-2.
y=\frac{2x}{2x-2}
Dividing by 2x-2 undoes the multiplication by 2x-2.
y=\frac{x}{x-1}
Divide 2x by 2x-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}